La abeja como polinizador

(Kamelev, 2020)

Por Lurian Morales Falcón

Introducción

La producción agrícola del planeta está directamente vinculada con los procesos de polinización. Los polinizadores, como veremos a continuación, hacen posible la reproducción de una gran cantidad de plantas incluyendo a muchas de las que utilizamos para nuestra alimentación. En esta serie de artículos estaremos respondiendo por qué los polinizadores son tan importantes utilizando varios ejemplos de manera independiente. Asimismo, discutiremos algunas relaciones particulares que existen entre plantas y polinizadores. Para concluir, estaremos ofreciendo un resumen de las posibles causas del descenso de los polinizadores y qué pasaría si perdiéramos a este polinizador en particular.

Relación entre plantas y abejas

¿Qué es la polinización y por qué los polinizadores son importantes? La polinización es la transferencia de los granos de polen de una flor masculina a una flor femenina (US Forest Service, s.f). De acuerdo con una publicación hecha por el Servicio de Conservación de Recursos Naturales de Pensilvania: “En los Estados Unidos, un tercio de toda la producción agrícola depende de los polinizadores”( NRCS Pennsylvania, s.f). Algunas cultivos, como las manzanas y las almendras dependen de las abejas, las abejas albañiles (Xylocopa) y los abejorros (Bombus) (Watts, 2019). Pero, ¿cómo lo hace la abeja? De acuerdo con una publicación del Museo de la Agricultura y Alimentación de Canadá (2021):

Cuando una abeja recolecta néctar y polen de la flor de una planta, algo de polen de los estambres, el órgano reproductor masculino de la flor, se adhiere a los pelos de su cuerpo. Cuando visita la siguiente flor, parte de este polen se frota sobre el estigma, o punta del pistilo, el órgano reproductor femenino de la flor. Cuando esto sucede, la fertilización es posible y se puede desarrollar una fruta con semillas. Si deseas ver este proceso en acción, accede al siguiente enlace https://www.youtube.com/watch?v=9dpsZOc1b4M.

Ahora bien, ¿cómo encuentran las flores las abejas? En una publicación hecha por la BBC News Mundo (2013) podemos encontrar la respuesta ante esta pregunta:

Las flores emiten señales eléctricas que comunican información al insecto polinizador (BBC News Mundo, 2013). Por otra parte, un video publicado en el sitio web de la Revista de Science Magazine (Callier, 2016) explica que se ha descubierto que las abejas contienen unos cabellos especializados que les ayudan en la detección de las flores y de su campo magnético (Callier, 2016). Además de este importante descubrimiento, también es cierto que las abejas tienen la habilidad de detectar y distinguir los colores (Riddle, 2016).

Por otro lado, ¿por qué las abejas polinizan? Según una publicación por la FDA, el néctar y el polen recolectados de las plantas con flores sirven como fuentes principales de su alimento (FDA, 2018). Las abejas cosechan el néctar y convierten el líquido azucarado en miel, la principal fuente de carbohidratos de los insectos. La miel proporciona a las abejas la energía para volar, mantener las colonias y realizar las actividades diarias en general. Ahora bien, ¿qué pasaría si las abejas desaparecieran? En la siguiente sección estaremos respondiendo a esta pregunta.

¿Qué ocurriría si las abejas desaparecieran?

Albert Einstein una vez dijo que: “Si la abeja desapareciera de la faz de la tierra, el hombre sólo tendría cuatro años de vida”(Rodgers, 2014). En este estudio publicado por el Servicio Nacional de Estadísticas Agrícolas (2017): “El valor total de toda la polinización en las Regiones 6 y 7 (territorios de Arizona, California y Hawaii) para 2017 fue de 273 millones de dólares”. Las abejas polinizan un 70% de los alimentos que consumimos. Si las abejas desaparecieran, perderíamos los siguientes cultivos:

  • Alfalfa
  • Almendras
  • Manzanas
  • Trébol
  • Frijoles

*Para ver la lista completa acceda al siguiente enlace https://bees.techno-science.ca/english/bees/pollination/food-depends-on-bees.php

Se ha demostrado que los cultivos bien polinizados tienen mejor sabor y un mayor valor nutritivo, una mejor apariencia y una vida útil más larga (United Nations, 2019). Perder las abejas significaría escasez de los beneficios antes mencionados y perjudicaría la seguridad alimentaria de muchos países, particularmente en Puerto Rico, donde la seguridad alimentaria es aproximadamente menos de un 15% (Universidad de Puerto Rico, 2020).

En conclusión, no podemos vivir sin las abejas. De todos los servicios ecosistémicos que obtenemos de ellas, creo que la polinización es el más importante. La evidencia científica muestra que las abejas y los demás polinizadores están en peligro por la contaminación y el uso excesivo de los agroquímicos (Zero Point Zero & Netflix, 2018-2019). Finalmente, creo que conservando las abejas y a los demás polinizadores, podríamos garantizar la seguridad alimentaria y podremos contribuir al balance de los ecosistemas del planeta.

Referencias Bibliográficas:

BBC News Mundo. (2013, 25 de febrero). Las flores “publicitan” su polen con impulsos eléctricos. https://www.bbc.com/mundo/noticias/2013/02/130225_flores_y_abejas_se_comunican_con_impulsos_electricos_ch

Callier, V. (2016, 30 de mayo). Video: How bees sense a flower’s electric field. Science | AAAS. https://www.sciencemag.org/news/2016/05/video-how-bees-sense-flower-s-electric-field

Kamelev, E. (2020, 20 de mayo). pexels-egor-kamelev-799308 (2) [Fotografía]. Pexels. https://www.pexels.com/photo/close-up-photo-of-yellow-and-black-wasp-799308/

Museo de la Agricultura y Alimentación de Canadá. (2021). La importancia de las abejas: polinización. https://bees.techno-science.ca/english/bees/pollination/default.php

National Agricultural Statistics Service, Agricultural Statistics Board, & United States Department of Agriculture. (2017, diciembre). Cost of Pollination (No. 2475–4315). National Agricultural Statistics Service. https://www.nass.usda.gov/Publications/Todays_Reports/reports/cstpol17.pdf

NC State Extension. (2020, 20 de mayo). Pollination [Video]. YouTube. https://www.youtube.com/watch?v=9dpsZOc1b4M&feature=youtu.be

NRCS Pennsylvania (s.f). The Importance of Pollinators. NRCS. USDA. Gov. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/pa/plantsanimals/?cid=nrcs142p2_018171

Riddle, S. (2016, 20 de mayo). How Bees See And Why It Matters. Bee Culture. https://www.beeculture.com/bees-see-matters/

Rodgers, P. (2014, 9 de septiembre). Einstein And The Bees. Should You Worry? Forbes. https://www.forbes.com/sites/paulrodgers/2014/09/09/einstein-and-the-bees-should-you-worry/?sh=19c053f98157

Watts, J. (2019, 12 de abril). From flowers to fruit: The Mysteries of apple Pollination. Swanson’s Nursery. https://www.swansonsnursery.com/blog/fruit-tree-pollination#:~:text=Pollination%20Basics&text=Honeybees%2C%20mason%20bees%2C%20and%20bumblebees,carried%20to%20the%20next%20flower.

United Nations. (2019, 20 de mayo). Decline, Disappearance of Bees Would Have Drastic Consequences for Global Ecosystems, Deputy Secretary-General Warns at Event Marking World Day | Meetings Coverage and Press Releases. United Nations.Org. https://www.un.org/press/en/2019/dsgsm1282.doc.htm

Universidad de Puerto Rico. (2020, 8 de mayo). Experta en Economía Agrícola del Recinto Universitario de Mayagüez de la UPR alerta sobre la vulnerabilidad de la seguridad alimentaria en la isla. https://www.upr.edu/experta-en-economia-agricola-del-recinto-universitario-de-mayaguez-de-la-upr-alerta-sobre-la-vulnerabilidad-de-la-seguridad-alimentaria-en-la-isla/

U.S. Food and Drug Administration. (2018, 30 de julio). Helping Agriculture’s Helpful Honey Bees. https://www.fda.gov/animal-veterinary/animal-health-literacy/helping-agricultures-helpful-honey-bees

U.S.Forest Service (s.f). What is Pollination? FS. US. Fed. https://www.fs.fed.us/wildflowers/pollinators/What_is_Pollination/#:~:text=Pollination%20is%20the%20act%20of,offspring%20is%20by%20making%20seeds.

Zero Point Zero & Netflix.(2018-2019) Rotten [TV Series]. Netflix. https://www.netflix.com/us-es/

Fragmentación de hábitat: Proceso dual

La transición del nomadismo al sedentarismo producida durante el Neolítico en la especie humana provocó la aparición de la agricultura y la ganadería (Bellwood, 2005; Vigne, 2008) empleadas ambas como fuente de recursos estable, evitando así tener que basarse únicamente en la caza y recolección como medio para conseguir alimento. Este nuevo estilo de vida lo que provocó fue la aparición y transmisión de enfermedades por el aumento de la densidad de población y un empeoramiento nutritivo, al basarse la alimentación en las plantas domesticadas que tenían un menor poder calorífico con respecto a los alimentos recolectados y cazados (Boserup, 1965). Teniendo en cuenta estas modificaciones conductuales podemos afirmar que desde el Neolítico la especie humana comenzó una alteración sistemática tanto de la especie en sí misma como del ambiente que la rodeaba, encargándose de modelar el paisaje dependiendo de las necesidades de cada momento. Estas alteraciones en los hábitats provocaron, provocan y provocarán el fenómeno conocido como fragmentación de hábitat.

Poblado humano tipo del Neolítico. Se pueden observar tanto el ganado como los cereales que están segando que nos muestra claramente la transición nómada-sedentario origen de la aportación humana a este proceso. Imagen obtenida de: https://www.otromundoesposible.net/wp-content/uploads/2020/09/neolitico1-1140×641.jpg

La fragmentación de hábitat es un proceso de origen dual, pudiendo ser tanto antrópico como natural. Surge cuando se produce un cambio en el uso del suelo que provoca la disrupción del hábitat que existía previamente, generando parches aislados y de menor tamaño rodeados por una matriz de composición variable (Wilcove et al., 1986; Haddad et al., 2015). Con relación al origen antrópico, esta matriz puede ser generada por cultivos agrícolas, urbanizaciones, redes viarias, reforestaciones y actividades mineras principalmente. Mientras que con el origen natural son los terremotos, incendios, tsunamis y otros fenómenos geoclimáticos como ciclones los que la generan (Cui et al., 2012; Haddad et al., 2015; Arief & Itaya, 2018).

Paraje insular o parcheado producido por la acción de la fragmentación. Imagen obtenida de: https://www.greenteach.es/wp-content/uploads/2018/02/fragmentaci%C3%B3n-de-h%C3%A1bitats-3.jpg

Al tratarse este proceso de uno de los principales motores de cambio global que afectan a la biodiversidad (Saunders et al., 1991), lleva suscitando un gran interés en los científicos desde que se postulara la teoría biogeográfica de islas de MacArthur & Wilson (1967) considerada como el germen. Actualmente se están produciendo avances en materia de fragmentación, encaminándose a maximizar la escala a la que se estudia este proceso, existiendo algunos trabajos que evalúan el efecto a nivel global (Keinath, 2016; Taubert, 2018). Pese a estos avances y mejoras, se abrió recientemente un debate con relación a cuál es el efecto de la fragmentación sobre la biodiversidad.

Este debate enfrentó dos posturas claramente opuestas. La de aquellos científicos que apoyaban los efectos negativos como son entre otros el aumento del efecto borde, la disminución de la conectividad, los cambios estocásticos impredecibles, la reducción del espacio efectivo para el establecimiento y alimentación de las comunidades, los cambios en la biología y genética de las especies presentes y las modificaciones de sus interacciones (Fischer & Lindenmayer, 2007). Y los que consideraban que tiene efectos positivos sobre la biodiversidad. Estas respuestas positivas son principalmente, el incremento de la conectividad funcional, la generación de diversidad de hábitats, la existencia de efectos borde positivos y la reducción de la competencia (Fahrig, 2017). Este debate finalizó con la aceptación general de que la fragmentación ejerce efectos negativos sobre la biodiversidad. Aunque sí que es cierto que existen excepciones. Ejemplo de ello, es la generación de diversidad de hábitats en cuanto a composición, tamaño y forma por acción de la fragmentación, lo cual está relacionado con un aumento de biodiversidad (Hu et al., 2012). Además, otro caso más específico donde se demuestra que no hay efecto de la fragmentación sobre la biodiversidad, es el producido sobre la entomofauna edáfica (comunidad de insectos que habita en el suelo). La cual está claramente adaptada a las condiciones inmediatamente próximas, que favorecen el no percibir la alteración física a escala de paisaje (Braschler & Baur, 2016).

Como conclusión si se atiende al principio de precaución, se tienen en cuenta estas consideraciones y se acepta el efecto negativo de la fragmentación, se debería tratar de conservar el mayor área de hábitat natural que fuera posible. Haciendo hincapié en los hábitats vulnerables y con una distribución restringida que son los que presentan un mayor riesgo de desaparición. Como se verá en una publicación futura, tampoco se debe olvidar el empleo de microrreservas ya que en hábitats concretos como los afloramientos yesíferos pueden ser la mejor herramienta de conservación.

Bibliografía:

Arief, M.C.W. & Itaya, A. (2018). Influence of the 2004 Indian ocean tsunami recovery process on land use and land cover in Banda Aceh, Indonesia. Journal of Forest Planning 22(2): 55-61.

Bellwood P. 2005. First farmers: The origins of agricultural societies. Blackwell Publishing, Oxford. 360 pp.

Braschler, B. & Baur, B. (2016). Diverse effects of a seven-year experimental grassland fragmentation on major invertebrate groups. PLoS One 11(2): e0149567.

Boserup E. 1965. The conditions of agricultural growth: The economics of agrarian change under population pressure. Aldine Publishing, Chicago. 132 pp.

Cui, P.; Lin, Y.; Chen, C. (2012). Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas. Ecological Engineering 44: 61-69.

Fahrig, L. (2017). Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution and Systematics 48: 1-23.

Fischer, J. & Lindenmayer, D.B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography 16(3): 265-280.

Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; Cook, W.M.; Damschen, E.I.; Ewers, R.M.; Foster, B.L.; Jenkins, C.N.; King, A.J.; Laurance, W.F.; Levey, D.J.; Margules, C.R.; Melbourne, B.A.; Nicholls, A.O.; Orrock, J.L.; Song, D.X.; Townshend, J.R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1 (2): e1500052.

Hu, G.; Wu, J.; Feeley, K.J.; Xu, G.; Yu, M. (2012). The effects of landscape variables on the species-area relationship during late-stage habitat fragmentation. PLoS One 7(8): e43894.

Keinath, D.A.; Doak, D.F.; Hodges, K.E.; Prugh, L.R.; Fagan, W.; Sekercioglu, C.H.; Buchart, S.H.M.; Kauffman, M. (2016). A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography 26(1): 115-127.

MacArthur, R.H. & Wilson, E.O. (1967). The theory of island biogeography. Princeton University Press, Princeton, New Jersey. 224 pp.

Saunders, D.A.; Hobbs, R.J.; Margules, C.R. (1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology 5(1): 18-32.

Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. (2018). Global patterns of tropical forest fragmentation. Nature 554 (7693): 519-522.

Vigne J.D. 2008. Zooarchaeological aspects of the Neolithic diet transition in the Near East and Europe, and their putative relationships with the Neolithic demographic transition. In Bocquet-Appel J.P. & Bar-Yosef O. The Neolithic demographic transition and its consequences: 179-205. Springer, New York.

Wilcove, D.S.; McLellan, C.H.; Dondson, A.P. (1986). Habitat fragmentation in the temperate zone. EnSoulé, M.E. (ed.) Conservation Biology, the science of scarcity and diversity: 237-256. School of Natural Resources of University of Michigan, Michigan.