Desastre ecológico en Rusia por un vertido de más de 20.000 toneladas de diésel

El presidente de Rusia, Vladimir Putin, ha declarado el Estado de emergencia a nivel Federal tras producirse el 29 de mayo un derrame de más de 20.000 toneladas de diésel en un río en el Círculo Polar Ártico (Nechepurenko, 2020).

El origen del vertido está en el colapso de un tanque de combustible en una central termoeléctrica cercana a la ciudad siberiana de Norilsk. La compañía propietaria de la planta, Norilsk Nickel, baraja la hipótesis de que la instalación colapsó debido al daño en sus cimientos por la descongelación del permafrost (Sahuquillo, 2020). El permafrost es el suelo congelado que encontramos principalmente en las latitudes altas del Hemisferio Norte, ocupando el 23,9% del territorio (Guo et al., 2018).

El vertido alcanza ya los 180.000 my una extensión de 12 km desde el lugar del accidente. En un primer momento se extendió desde el río Daldykán hacia el río Ambárnaya y ahora se dirige hacia el lago Pyásino. Los operarios de limpieza intentan evitar que el vertido llegue hasta dicho lago (Sahuquillo, 2020). La viceministra de Recursos Naturales y Ecología de Rusia, Elena Panova, declaró que el ecosistema tardará al menos 10 años en recuperarse. Los trabajos de limpieza ya han comenzado y los operarios están utilizando bombas y barreras de contención flotantes para recoger el petróleo del agua (Deutsche Welle, 2020). La tierra contaminada será trasladada para su tratamiento (Euronews, 2020).

Arctic_Circle_oil_spill
Imágenes tomadas dentro de la misión Copernicus Sentinel-2 por la Agencia Espacial Europea donde se observa el antes (23 de mayo) y el después del vertido (31 de mayo y 1 de junio) y cómo éste ha ido avanzando con el tiempo. Fuente: https://cutt.ly/2yNBsco

El Comité de Investigación ha abierto cuatro causas penales contra la empresa por contaminación de la tierra, violación de las reglas de la protección del medio ambiente, contaminación del agua y negligencia ya que informaron del derrame con dos días de retraso (Deutsche Welle, 2020). Además el jefe de la planta, Vyacheslav Starostin, ha sido detenido (Redacción BBC News Mundo, 2020).

Norilsk Nickel es la primera productora a nivel mundial de níquel y platino y ya ha sido relacionada en el pasado con otros vertidos (Nechepurenko, 2020). Por otro lado, su actividad diaria vierte a la atmósfera óxidos de azufre que causan lluvia ácida en la región, dejando a su paso un paisaje sin vegetación (Kramer, 2016). Cabe destacar que las poblaciones cercanas sufren problemas de salud como cáncer de pulmón, alergias y problemas cutáneos (Kramer, 2007). Esta región ya había sufrido vertidos previos relacionados con la industria metalúrgica. Todo ello ha contribuido a que la ciudad de Norilsk sea tristemente famosa por ser una de las más contaminadas del planeta (Gómez, 2020).

Por si fuera poco, la gran cantidad de contaminantes dificulta el congelamiento del permafrost, empeorando aún más la situación ya que Norilsk es una de las dos ciudades rusas que se sitúan enteramente sobre permafrost continuo. El deshielo de este suelo congelado podría provocar más colapsos en esta planta y en otras industrias de la zona así como problemas en infraestructuras como viviendas y puentes (Kramer, 2007).

El deshielo del permafrost contribuye al calentamiento global ya que permite la degradación microbiana de la materia orgánica almacenada en él liberando carbono a la atmósfera. Las regiones con permafrost pasarán de ser sumideros de carbono a fuentes de gases de efecto invernadero a finales del siglo XXI, lo que puede tener efectos devastadores a nivel planetario (Guo et al., 2018).

 

Bibliografía:

Deutsche Welle. (5 de junio de 2020). Derrame de 21.000 toneladas de diésel causa desastre ambiental en Rusia. Deutsche Welle. Última consulta el 8 de junio de 2020 en: https://p.dw.com/p/3dISa

Euronews. (5 de junio de 2020). Rusia combate los efectos del vertido en el Ártico. Euronews. Última consulta el 8 de junio de 2020 en: https://cutt.ly/xyMP0t6

Gómez, M. [MarGomezH]. (6 de junio de 2020). El pasado 29 de mayo tuvo lugar una grave catástrofe medioambiental con un vertido de más de 21.000 toneladas de vertido diésel en la región del Ártico ruso [Hilo en Twitter]. Última consulta el 8 de junio de 2020 en: https://cutt.ly/kyMATPe

Guo, W., Liu, H., Anenkhonov, O. A., Shangguana, H., Sandanov, D. V., Yu, A., Guozheng, H., Wu, X. (2018). Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agricultural and Forest Meteorology, 252, 10-17.

Kramer, A. E. (12 de julio de 2007). For One Business, Polluted Clouds Have Silvery Linings. The New York Times. Última consulta el 8 de junio de 2020 en: https://cutt.ly/IyMPKPQ

Kramer, A. E. (8 de septiembre de 2016). In Siberia, a ‘Blood River’ in a Dead Zone Twice the Size of Rhode Island. The New York Times. Última consulta el 8 de junio de 2020 en: https://cutt.ly/jyMPHDJ

Nechepurenko, I. (4 de junio de 2020). Russia Declares Emergency After Arctic Oil Spill. The New York Times. Última consulta el 8 de junio de 2020 en: https://cutt.ly/0yMPFzZ

Redacción BBC News Mundo. (4 de junio de 2020). El desastroso derrame de combustible que puso en emergencia a una región ártica de Rusia. BBC News Mundo. Última consulta el 8 de junio de 2020 en: https://cutt.ly/CyMPMmG

Sahuquillo, M. R. (4 de junio de 2020). Las autoridades investigan el vertido de 20.000 toneladas de combustible en un río del ártico ruso. El País. Última consulta el 8 de junio de 2020 en: https://cutt.ly/wyMPNie

Imagen destacada obtenida de El País: https://cutt.ly/pyNNSlt

Los asesinos de las abejas

Hoy es el #DíaInternacionalDeLasAbejas. Muchas veces nos preguntamos por qué se fomentan crear los “Días especiales de algo“, pero tiene todo el sentido: para hablar de ello.

Empezaré por dar datos económicos, ya que el bolsillo de algunos es el primer lugar en el que mira antes de decidir si conservar o no una especie. Más del 70% de los cultivos del mundo dependen de la polinización biótica en algún punto, que es principalmente llevada a cabo por insectos (1). Es más, la polinización por parte de las abejas está valorada en 153 miles de millones de dolares, por lo que ya no hay excusa para afirmar que son un importante objetivo esencial para la conservación (2).

Los productos de las abejas, como la miel, el polen, etc. también tienen un alto valor económico, y son consumidos en prácticamente todo el mundo. ¿Cada cuanto comes miel? Pues muchos estudios han demostrado que estos productos resultantes del trabajo de los enjambres en ambientes cercanos a cultivos agrarios están altamente contaminados por productos o sustancias químicas, como los pesticidas que se usan para eliminar las plagas de insectos de los cultivos (1).

Actualmente, la mortalidad anual de las abejas es del 30-40%. Hablamos de que continuamente se detectan colmenas completamente destruidas. Contribuyendo a este declive se añaden patógenos emergentes, pérdida de hábitat, estrés nutricional, y por supuesto, el uso de pesticidas. Sin embargo, la relación entre el grave descenso poblacional de las abejas y el uso de pesticidas es difícil de establecer (3). Sin embargo, para que nos hagamos una idea, un grano de maíz contendría suficientes ingredientes activos para fulminar una colonia entera de abejas (1).

El llamado problema de colapso de colonias (o Colony Collapse Disorder, CCD, por sus siglas en inglés) fue un fenómeno que se dio en la década del 2000. Se caracterizaba por la rápida perdida de abejas adultas (obreras), pero no de la reina y sus crías. Este fenómeno se dio en muchas partes del mundo, entre ellas Bélgica, Francia, Holanda, Grecia, Italia, Portugal y España. También se emitieron informes preliminares en Suiza y Alemania, aunque en menor grado, mientras que la Asamblea de Irlanda del Norte recibió en 2009 informes de descensos superiores al 50%. Un tercio de las colonias de abejas de EEUU se perdieron entre los tres inviernos entre 2006 y 2009. ¿El culpable? Entre otros, se sospecha que los principales asesinos de abejas en este caso se llaman clotianidina, imidacloprid y tiametoxan. De otra importante afección, la llamada “enfermedad de las abejas locas”, descrita por cuidadores de abejas franceses desde 1999, también han culpado al imidacloprid (4)

¿Quiénes son clotianidina, imidacloprid y tiametoxan? pues son congéneres de la familia de los neonicotinoides, pesticidas (concretamente, insecticidas) que fueron desarrollados sustituyendo a otras familias de pesticidas que se prohibieron debido a su capacidad de perjudicar gravemente la salud de algunos mamíferos. Los neonicotinoides “atacan” un receptor llamado nAChR, un receptor que media la transmisión sináptica en el sistema nervioso central del insecto, interfiriendo en la transmisión de mensajes neuronales, provocando parálisis, bloqueo de los receptores y, al poco, la muerte. Los receptores nAChR de insectos y mamíferos son bastante diferentes, por eso se asume que los neonicotinoides son altamente selectivos por los insectos (5).

¡Pero no son selectivos entre insectos!

Cabe remarcar que las abejas no son las únicas afectadas por ellos. Estos pesticidas se quedan acumulados en charcos, de los que beben especies granívoras de aves. O acaban en ríos, afectando a insectos acuáticos y algunos peces. Es importante entender siempre el mundo desde un punto de vista ecológico, es decir, como un ciclo donde las especies están completamente interconectadas entre ellas. Por eso, cambios en la abundancia de insectos acuáticos en los ríos provocan alteraciones en las cadenas tróficas, reduciendo la cantidad de pescado para la captura (5). ¡Anda, de nuevo la ecología afectando al bolsillo!

Pero, si son tan “malos” para las abejas y demás insectos – y las especies que afectan indirectamente- ¿por qué no están prohibidos? Bueno, es que están prohibidos, al menos en Europa (bajo ciertos términos) (6,7). Sin embargo, se siguen detectando cantidades bastante elevadas de estos contaminantes en los ríos de todo el mundo. Para poner un ejemplo español, un estudio en otoño de 2013 – época en la que NO se aplican pesticidas en los cultivos- determinó la presencia de imidacloprid en el agua de los ríos Júcar y Turia, en concentraciones de hasta 206 ng/l (8). Poniéndolo en escala, se determinó que a partir de 200 ng/L hay efectos agudos a corto plazo (daños inmediatos) en las comunidades de invertebrados acuáticos, y a partir de 35 ng/L, efectos crónicos a largo plazo (9).

Ahora que nos hemos centrado en las magnitudes, me gustaría volver a las abejas. Entre los efectos subletales que sufren las abejas podemos mencionar fecundidad reducida (a partir de 1 ng/l), replicación viral de patógenos que puedan atacarlas potenciada (a partir de 0,1 ng/l), comportamiento de forrajeo deteriorado (a partir de 38 ng/l), menor tamaño, menor producción de abejas reina, desorientación, aprendizaje y memoria dañadas (lo que hace que se pierden intentando regresar al panal), comunicación perjudicada, aprendizaje y memoria dañadas, y longevidad reducida (1).

Esta es solo una de las muchas familias de pesticidas que las afectan. Cabe añadir el efecto aditivo de muchos pesticidas, es decir, las concentraciones del pesticida A y sus efectos se suman con las del pesticida B y sus efectos. Entendido el riesgo ecológico y económico que suponen los pesticidas en las abejas, y entendiendo la situación en la que se encuentran, es tu momento de actuar. ¿Cómo las puedes ayudar?

  • Cultiva plantas con flores.
  • Prescinde de insecticidas. En su lugar, fomenta el uso de prouctos de origen biológico en la agricultura, como bioestimulantes, biopesticidas, bioelicitores (como se suele decir, si ya está inventao’!) Si tienes curiosidad, en este enlace puedes ver más sobre estas alternativas.
  • Y por supuesto, ¡no las mates! La gran mayoría de las especies de abejas tienen una serie de púas en el aguijón, por lo que tras clavar el aguijón en su víctima, mueren al volver a volar, el abdomen se desprende de su cuerpo y queda enganchado en el tejido de la víctima. No quieren atacarte mientras tú las ignores … ¡sería su suicidio!
  1. Samson-Robert, O., Labrie, G., Chagnon, M., & Fournier, V. (2014). Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees. Plos ONE9(12), e108443. doi: 10.1371/journal.pone.0108443
  2. Giroud, B., Vauchez, A., Vulliet, E., Wiest, L., & Buleté, A. (2013). Trace level determination of pyrethroid and neonicotinoid insecticides in beebread using acetonitrile-based extraction followed by analysis with ultra-high-performance liquid chromatography–tandem mass spectrometry. Journal Of Chromatography A1316, 53-61. doi: 10.1016/j.chroma.2013.09.088
  3. Jovanov, P., Guzsvány, V., Lazić, S., Franko, M., Sakač, M., Šarić, L., & Kos, J. (2015). Development of HPLC-DAD method for determination of neonicotinoids in honey. Journal Of Food Composition And Analysis40, 106-113. doi: 10.1016/j.jfca.2014.12.021
  4. Mullin, C., Frazier, M., Frazier, J., Ashcraft, S., Simonds, R., vanEngelsdorp, D., & Pettis, J. (2010). High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health. Plos ONE5(3), e9754. doi: 10.1371/journal.pone.0009754
  5. Goulson, D. (2013). REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal Of Applied Ecology50(4), 977-987. doi: 10.1111/1365-2664.12111
  6. Reg (EU) 485/2013: Banned use and selling treated seeds.
  7. Reg (EU) 2018/783-4-: Exceptions: Greenhouses (whole vital cycle)
  8. Ccanccapa, A., Masiá, A., Andreu, V., & Picó, Y. (2016). Spatio-temporal patterns of pesticide residues in the Turia and Júcar Rivers (Spain). Science Of The Total Environment540, 200-210. doi: 10.1016/j.scitotenv.2015.06.063
  9. Morrissey, C., Mineau, P., Devries, J., Sanchez-Bayo, F., Liess, M., Cavallaro, M., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International74, 291-303. doi: 10.1016/j.envint.2014.10.024

Los diferentes organismos modelo. Capítulo 7: insectos

Los insectos son el grupo más numeroso del reino animal, hay un millón de especies descritas y se estima que hay entre 6 y 10 millones de especies sin descubrir (Wilson, 2015). Los insectos representan el 80% de las especies animales conocidas en la actualidad (García et al, 2012). Fueron los primeros animales en volar y son los únicos invertebrados con dicha capacidad (Wilson, 2015). En cuanto a su taxonomía, pertenecen al filo Arthopoda, al subfilo Hexapoda y a la clase Insecta.  

Dentro del filo Artropodos, son el subfilo mas importante y a su vez, esta clase se ha dividido en al menos 30 ordenes(Wilson, 2015). No obstante, su clasificación es bastante compleja a causa de su gran diversidad. La clase insecta se divide en dos subclases, en función de la presencia y estructura de las alas García et al, 2012):

  • Subclase Apterigotos: insectos sin alas, se trata de un grupo menos evolucionado. No presentan metamorfosis.
  • Subclase Pterigotos: insectos con alas o secundariamente ápteros, son un grupo más evolucionado, más especializados y más abundante que el de los Apterigotos. Se divide en dos infraclases:
    • Neópteros: las alas están plegadas hacia atrás.
    • Paleópteros: no plegan las alas sobre el abdomen.

collage
Insectos. A: Escarabajos, B: tijereta, C: Mosca, D: chinche, E: abeja, F: mariposa, G: saltamontes, H: caballito del diablo. / Pixabay.com. Collage por Gómez, M (2020).

Dentro de los neópteros, los ordenes mas importantes son: coleópteros (escarabajos, gorgojos, mariquitas, cantáridos, etc), dermápteros (tijeretas), dípteros (moscas y mosquitos), hemípteros (chinches y cigarras), himenópteros (abejas, avispas y hormigas), lepidópteros (mariposas y polillas) y ortópteros (saltamontes y grillos). En paleópteros, destaca el orden odonatos (libélulas y caballitos del diablo) (García et al, 2012 & Contreras, 2014).

Los insectos presentan una anatomía externa común, presentan un exoesqueleto compuesto por placas duras, impermeables y ligeras llamadas escleritos, unidas por articulaciones flexibles. Su cuerpo esta diferenciado en tagmas (García et al, 2012):

aparatosbucales
Sistemas bucales de insectos

  • Cabeza (1 par de antenas, ojos compuestos, hasta 3 ocelos y diversos aparatos bucales).
  • Torax (3 segmentos; 3 pares de patas y hasta 2 pares de alas).
  • Abdomen (9 -11 segmentos con apéndices muy reducidos o ausentes, a veces 2 a 3 cercos).

En cuanto a los sistemas bucales, se pueden diferenciar 4 básicos: (A) aparato masticador ej., ortópteros), (B) cortador-chupador (ej., himenópteros), (C) chupador en espiritrompa (lepidópteros) y (D) chupadorr (ej., dípteros).

Los insectos respiran por un sistema de tráqueas, por su sistema circulatorio circula hemolinfa. Normalmente son ovíparos, y la mayoría no suelen cuidar los huevos hasta su eclosión. Tras la eclosión, muchos  sufren metamorfosis (Contreras, 2014). Por ejemplo los saltamontes experimentan una metamorfosis incompleta, en estado juvenil (ninfa) es muy parecido al adulto pero en miniatura. En cambio, las mariposas sufren una metamorfosis completa, la cría (larva) pasa por cuatro fases distintas hasta alcanzar el aspecto adulto (Wilson, 2015).

Los insectos son muy diversos en su modo de vida. Han surgido en tierra firme, pero tienen una gran capacidad de adaptación y por eso se pueden encontrar en zonas de agua dulce y costeras, en desiertos, en las cumbres más elevadas, etc. (García et al, 2012). También existen insectos parásitos como los piojos o las ladillas. Sin embargo, dado que no pueden sobrevivir a la congelación, no hay insectos en los polos. En las zonas tropicales es donde se encuentra la mayor diversidad de insectos (Contreras, 2014).  Sin embargo, sí hay un insecto capaz de habitar en la Antártida, el insecto  Belgica antárctica (Alvarez, 2018).

Los insectos no se deben confundir con los arácnidos, escorpiones, crustáceos o ciempiés que también son artrópodos, pero no insectos. El insecto más pequeño mide alrededor de 150 micrómetros, mientras que el más grande, durante el carbonífero (hace 350 ma.) llegó a medir 75 cm (Contreras, 2014).

Drosophila melanogaster

Drosophila melanogaster es conocida como la mosca de la fruta o del vinagre. Esta especie es un pequeño insecto dentro del orden dípteros (Valls, 2011). Los dípteros presentan ojos compuestos grandes y en general, 3 ocelos. Un aparato bucal chupador-picador. Las alas anteriores son transparentes y presentan poca venación, mientras que las posteriores están modificadas en halterios o balancines (García et al, 2012). Las moscas de género Drosophila son unas 900 especies de pocos milímetros distribuidad por todo el planeta, salvo en climas extremos. Drosophila melanogaster  se alimenta de las colonias de levadura que crecen encima de manzanas, uvas, plátanos y otras frutas dulces (Valls, 2011).

Captura de pantalla 2020-04-26 a las 16.32.08
Fotografía de un díptero, en vista dorsal (García et al, 2012).

La mosca de la fruta es uno de los organismos modelo con mayor renombre en la investigación. Este organismo lleva mas de cien años dentro del laboratorio. Inicialmente se uso para experimentos sobre evolución, dado su corto ciclo de vida (10-15 días) permitía estudiar la aparición y transmisión de mutaciones en generaciones sucesivas, sometidas a diferentes condiciones ambientales. Posteriormente se vio la idoneidad de esta especie para estudios genéticos. A partir de las moscas mutantes, Thomas H. Morgan, Alfred Sturtevant, Calvin B. Bridges y Hermann Müller  realizaron diversos experimentos, los cuales constituyen el cuerpo de la Teoría cromosómica de la Herencia (Valls, 2011).

Hoy en día, este organismo esta siendo muy útil en los estudios del cáncer, en los procesos de formación de tumores y metástasis. También permite estudiar temas relacionados con la conducta, algunos de estos  estudios se centran en los ritmos circadianos entre actividad e inactividad, otros se fijan en aspectos como el aprendizaje y la memoria a partir de las reacciones olor y el gusto. También conductas relacionadas con la acción a las drogas y el alcohol, para determinar qué mecanismos celulares y moleculares básicos que hay detrás de las conductas adictivas (Valls, 2011).

Capítulo 6.

REFERENCIAS

Alvarez, J (2018).El único insecto de la Antártida, que puede sobrevivir dos años congelado, es también el único animal terrestre que vive allí. La brújula verde. Disponible en: https://www.labrujulaverde.com/2018/05/el-unico-insecto-de-la-antartida-que-puede-sobrevivir-dos-anos-congelado-es-tambien-el-unico-animal-terrestre-que-vive-alli [Último acceso: 26 Abr. 2020].

Contreras, R. (2014). Los insectos. La guía. Disponible en: https://biologia.laguia2000.com/zoologia/los-insectos [Último acceso: 26 Abr. 2020].

García, A., Outerelo, R., Ruiz, E., Aguirre, J., Almodóvar, A., Alonso, J., Benito, J., Arillo, A. (2012). Prácticas de Zoología Estudio y diversidad de los Artrópodos Insectos. Reduca (Biología). Serie Zoología. 5 (3): 42-57.

Wilson, E. (2015). Insectos (hacia 400000000 a C.). En: Gerald, M. & Gerald, G. (eds). El libro de la biología. Del origen de la vida a la epigenética, 250 hitos de la historia de la biología: 36. Librero, AB Kerkdriel, Países Bajos.

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 26 Abr. 2020].

Los diferentes organismos modelo. Capitulo 5: plantas

Ya en el 2017, en mi artículo “Descontaminación de suelos mediante el uso de plantas transgénicas” os hable de la importancia que puede tener la modificación genética en plantas, tanto para el ser humano como para el medio ambiente.  En dicho artículo mencionaba el uso de la especie Arabidopsis thaliana, como planta transgénica en la fitorremediación, la cual es capaz de acumular mercurio (Hg), una de las sustancias más tóxicas.

Aunque A. thaliana no sea de los organismos modelo más famoso entre la población (fuera del laboratorio es considerada una mala hierba) como tal vez si lo sean los ratoncitos blancos (Mus musculus) y las moscas de la fruta (Drosophila melanogaster), es una de las plantas mas estudiadas globalmente a nivel genético y fisiológico (Busoms, 2016).

La planta A. thaliana pertenece a la familia de las crucíferas (Brassicaceae), a la que pertenecen unas 4 mil especies (Poveda, 2018). Entre estas especies destacan algunas de interés agrícola como la col (Brassica oleracea) y el nabo (Brassica napus) (Valls, 2011). La especie protagonista de este artículo esta distribuida por todos los continentes (es cosmopolita), es una planta anual de pequeño tamaño, entre 10 y 30 cm (Povedad, 2018), presenta un ciclo de vida relativamente corto (unas 6 semanas) y es un organismo muy prolífico, siendo capaz de producir hasta 10000 semillas por individuo, las cuales son viables varios años. También es capaz de autofecundarse, es decir, es autógama (Busoms, 2016). Presenta 4 pétalos en las flores, las cuales son blancas, con forma de cruz (por esta razón pertenece a las crucíferas) (Poveda, 2018). Dichas flores son pequeñas y hermafroditas (órganos reproductores masculinos y femeninos). En cuanto al fruto, es una silicua de unos 4 cm de largo y 2 mm de ancho, pudiendo albergar hasta 30 semillas por silicua (Valls, 2011). Las semillas serán dispersadas por el viento, este tipo de dispersión es conocido como “dispersión anemócora”.

Arabidopsis
Representación gráfica de la planta Arabidopsis thaliana / Poveda, 2018.
Silicuas-y-semillas-de-A.-thaliana
Silicuas y semillas de A. thaliana / Poveda, 2018.

Esta planta, a simple vista, no parece gran cosa y mucho menos que tenga algún interés para el ser humano. Esto puede deberse a que no destaca visualmente para ser una especie ornamental y sus órganos no son atractivos para su consumo. No obstante, como os he dicho al principio, es un organismo modelo de los mas importantes y estudiados en investigación sobre biología molecular, genética y fisiología vegetal (Poveda, 2018). Es cierto que su uso en el laboratorio ha sido bastante tardío, y consolidado en la década de los años 80 (Valls, 2011). Arabidopsis thaliana  consta de 7 características principales por las que ha sido elegida organismo modelo: su pequeño tamaño y fácil manejo, su corto tiempo de generación, su autopolinización y número de semillas producidas, su pequeño genoma y su número reducido de cromosomas (Poveda, 2018). Estas características permiten que cultivarla en invernaderos y cámaras de cultivo sea bastante sencillo. Además su pequeño genoma, secuenciado completamente en el año 2000, permite su manipulación por ingeniería genética de manera fácil y rápida en comparación con otras especies de plantas (Valls, 2011).

Con esta especie se investigan muchos procesos biológicos. A nivel genético, gracias a la creación de mutantes, se han logrado desarrollar grandes conocimientos en el mundo vegetal, como en los procesos de germinación y floración, crecimiento radicular, síntesis de la pared celular, entre otros (Poveda, 2018). Sin embargo, la investigación con A. thaliana  también es muy útil en ecología, es decir, interacciones con otras plantas al rededor de su medio ambiente. A nivel ecológico se estudian las respuestas de dicha planta a condiciones estresantes de tipo abiótico (como condiciones de salinidad, sequía, heladas, etc.) o bien cómo reacciona ante ataques de patógenos y plagas. Un ejemplo de este tipo de investigaciones, a nivel ecológico, es el estudio realizado por  Sílvia Busoms y su equipo (2015) en Cataluña. Estos científicos estudian la tolerancia que presentan las poblaciones costeras de A. thaliana ante la salinidad del medio ambiente en el que se encuentran.

Para leer el capítulo anterior: capítulo 4.

Para leer el siguiente capitulo: capítulo 6

Para leer mi artículo: “Descontaminación de suelos mediante el uso de plantas transgénicas”.

REFERENCIAS

Busoms, S.; Teres, J.; Huang, X.; Bomblies, K.; Dnaku, J.; Douglas, A.; Weigel, D.; Poschenrieder, C.; Salt, D. E. (2015). Salinity is an agent of divergent selection driving local adaptation of Arabidopsis thaliana to coastal habitatsPlant Physiology 168 (3): 915-929. doi: 10.1104/pp.15.00427.

Busoms, S (2016). “Arabidopsis thaliana, no sólo una planta de laboratorio. Importancia de las poblaciones silvestres catalanas.” UABDivulga [online]. Disponible en: https://www.uab.cat/web/detalle-noticia/arabidopsis-thaliana-no-solo-una-planta-de-laboratorio-importancia-de-las-poblaciones-silvestres-catalanas-1345680342040.html?noticiaid=1345695163636 [Último acceso: 21 Feb 2020].

Poveda J. (2018).  “Arabidopsis thaliana: la “mala hierba” que alcanzó la cima de la ciencia vegetal”. [online]. Disponible en: https://naukas.com/2018/01/11/arabidopsis-thaliana-la-mala-hierba-que-alcanzo-la-cima-de-la-ciencia-vegetal/ [Último acceso: 21 Feb 2020].

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 21 Feb 2020].

 

¿Deberíamos dejar de comer pescado? – Entrevista en Longitud de Onda de Radio Clásica (RTVE)

A raíz del artículo que hemos publicado en The Conversation sobre la sostenibilidad y salubridad del consumo de pescado nos pidieron una entrevista que se ha emitido esta mañana. Autoras con igual nivel de participación (alumnas o egresadas de la URJC participantes en este blog divulgativo Ecotoxsan): Sara Atienza, Alba Casillas, Helena G. Cortés y Andrea Portal coordinadas por Myriam Catalá. Podéis oir la grabación del programa completo en línea aquí (la entrevista está en el minuto 15).

El recorte de la entrevista se puede escuchar aquí:

2 Becas de Postgrado para nacionales de la Comunidad Iberoamerican de Naciones en el Máster en Técnicas de Conservación de la Biodiversidad y Ecología (Oficial URJC)

La Fundación Carolina y la URJC han firmado un convenio por el que nuestro Programa de Máster en Técnicas de Conservación de la Biodiversidad y Ecología contará con 2 becas de postgrado para el próximo curso académico 2020/2021.

Las becas están dirigidas a nacionales de algún país de América Latina miembro de la Comunidad Iberoamericana de Naciones o de Portugal y se pueden solicitar hasta el día 10 de marzo de 2020.

Las condiciones y el formulario de solicitud de las becas están aquí: https://gestion.fundacioncarolina.es/programas/5328

Toda la información del Programa de Máster está aquí: https://www.urjc.es/estudios/master/759-tecnicas-de-conservacion-de-la-biodiversidad-y-ecologia

Lynn, líquenes, abejas e imagen: Espléndida síntesis de unas Jornadas Científicas extraordinarias sobre una científica única

Rubén Duro nos cuenta su síntesis de las recientes Jornadas sobre Lynn Margulis y la Tierra Simbiótica, en las que tuvo un papel estelar presentándonos el documental Symbiotic Earth.

Blog sobre contenido audiovisual científico, microscopía, organismos microscópicos, fotomicrografía e investigación escrito por Rubén Duro.

Origen: Lynn, líquenes, abejas e imagen

La lectura ideal para estas vacaciones de Navidad: las aventuras de un científico español en la Antártida

Leopoldo G. Sancho es catedrático de Botánica de la Universidad Complutense y lleva viajando a la Antártida en diversas campañas de investigación desde el 1991. Ahora comparte sus aventuras y anécdotas en un libro titulado Antártida y publicado por Ediciones Pirámide. Os recomiendo su lectura, no sólo porque este liquenólogo de prestigio internacional conoce como pocos ese inhóspito continente, sino porque también fue pionero en la investigación del potencial de las simbiosis liquénicas como viajeros espaciales. Si aguantaban las extremas condiciones de la Antártida ¿Aguantarían el espacio exterior? Y descubrió que sí… sí que aguantan.

Origen: Antártida | Ediciones Pirámide

La Tierra Simbiótica: Cómo Lynn Margulis Inicio una Revolución Científica

Asistir a esta reunión ha sido un privilegio. Escuchar a tantos grandes científicos un placer y conocer más de una figura de la Historia de la Biología como Lynn Margulis totalmente estimulante. Aquí os dejo una foto de los participantes y organizadores.

Grupo Simbiosis Diciembre 2019.jpg
Participantes y organizadores del Seminario La Tierra Simbiótica. De izquierda a derecha, empezando por la fila de arriba: César Bordenave, Ricardo Amils, Ruben Duro, Lorenzo Lamattina, Arantxa Molins, Pedro Carrasco, Patricia Moya, Lucia Muggia, Leopoldo G. Sancho, Eva Barreno, Myriam Catalá y Salva Chiva