Hipoglucemias provocadas por la sobreproducción de insulina

El hiperinsulinismo se trata de una enfermedad relacionada con la sobreproducción de insulina. Aunque en la mayoría de los casos esta afección está estrechamente relacionada con la hormona del crecimiento, no son solo los adolescentes quienes pueden llegar a padecerla (Valladares, 2018). Esta enfermedad se define como la condición de un individuo que tiene grandes cantidades de insulina en la sangre y, como consecuencia, la glucosa por debajo de la media. Si no está relacionado con la hormona del crecimiento suele estar provocado por un insulinoma, tumor benigno en el páncreas. Dicho tumor provoca la maduración temprana de la proteína que conforma la insulina, haciendo que se libere en la sangre antes de lo debido (Wisse et al., 2018).

En casos extremadamente raros puede darse una mutación genética en la proteína GDH provocando un cambio conformacional. Normalmente la proteína GDH instruye al páncreas cuando es necesario liberar insulina, mediante la unión a una molécula, llamada acelerador. La unión entre la GDH y la molécula se produce cuando la glucosa ha superado cierto umbral, pasando la GDH a ser una proteína activa. En cambio, las personas que padecen hiperinsulinismo por mutación de la proteína GDH están constantemente receptivas al acelerador sin importar el nivel de glucosa en sangre.  Por tanto, hay una señal constante al páncreas para que libere insulina y esto puede terminar en diabetes tipo 2, ya que el páncreas se termina por saturar. Como se ha mencionado, es una enfermedad muy rara y se detecta poco después del nacimiento (Europa Press, 2017).

Otro grupo de personas que son susceptibles a la sobreproducción de insulina, y la consecuente diabetes (Castro, 2013), son aquellas que sufren obesidad y desórdenes alimenticios. Comúnmente se piensa que la obesidad se da por tener un metabolismo lento pero, realmente, es todo lo contrario. La insulina participa en la distribución de grasas y cuanto más tejido graso debe alcanzar para realizar sus funciones, más va a tener que trabajar el páncreas para producir tales cantidades de insulina. Por lo tanto, al igual que en el caso anterior, llegará un punto en que el páncreas no pueda más y se produzca una diabetes de tipo 2. En los casos de obesidad y desórdenes alimenticios el hiperinsulinismo suele estar acompañado de otros problemas, como la obesidad central, el hígado graso y, en el caso de las mujeres, ovarios poliquísticos (Carrasco et al., 2013). 

Referencias:

Carrasco, F.; Galgani J. E.; Reyes M. ( 2013). Síndrome de la resistencia a la insulina. Estudio y manejo. Clínica las Condes 24(5): 827-837.

Castro, M. R. (2019). “Hiperinsulinemia: ¿es diabetes?”. Mayo Clinic [online]. Disponible en: https://www.mayoclinic.org/es-es/diseases-conditions/type-2-diabetes/expert-answers/hyper insulinemia/faq-20058488 [Último acceso: 08 Mar. 2020].

Europa Press (2017). “Una mutación genética promueve el hiperinsulinismo congénito”. Infosalus [online]. Disponible en: https://www.infosalus.com/salud-investigacion/noticia-mutacion-genetica-promueve-hiperinsulinismo-congenito-20170919073838.html [Último acceso: 08 Mar. 2020].

Valladares, B. (2018). “Hiperinsulinismo: a un paso de la diabetes”. Farmaten [online]. Disponible en: https://www.farmaten.com/blog/es/hiperinsulinismo-diabetes/ [Último acceso: 08 Mar. 2020].

Wisse, B.; Zieve, D.; Conaway, B. (2018). “Insulinoma”. Medlineplus [online]. Disponible en: https://medlineplus.gov/spanish/ency/article/000387.htm [Último acceso: 08 Mar. 2020].

El conocimiento del microbioma ayudará a luchar contra los tumores pulmonares | madrimasd

Biólogos especializados en cáncer del MIT han descubierto un nuevo mecanismo que los tumores pulmonares explotan para promover su propia supervivencia

Origen: Las bacterias promueven el desarrollo de tumores pulmonares | madrimasd

El ritmo cerebral es el que nos saca del laberinto | madrimasd

Para sacarnos de un laberinto, el cerebro modifica el ritmo de los pulsos neuronales: oscurece las calles que no nos convienen para que nos centremos en la única ruta que nos lleva a casa

Origen: El ritmo cerebral es el que nos saca del laberinto | madrimasd

Identifican una estrategia celular para solucionar las proteínas mal plegadas | madrimasd

El hallazgo es el resultado de un estudio español para investigar el proceso de control de calidad de las proteínas

Origen: Identifican una estrategia celular para solucionar las proteínas mal plegadas | madrimasd

Los diferentes organismos modelo. Capitulo 5: Plantas

Ya en el 2017, en mi artículo “Descontaminación de suelos mediante el uso de plantas transgénicas” os hable de la importancia que puede tener la modificación genética en plantas, tanto para el ser humano como para el medio ambiente.  En dicho artículo mencionaba el uso de la especie Arabidopsis thaliana, como planta transgénica en la fitorremediación, la cual es capaz de acumular mercurio (Hg), una de las sustancias más tóxicas.

Aunque A. thaliana no sea de los organismos modelo más famoso entre la población (fuera del laboratorio es considerada una mala hierba) como tal vez si lo sean los ratoncitos blancos (Mus musculus) y las moscas de la fruta (Drosophila melanogaster), es una de las plantas mas estudiadas globalmente a nivel genético y fisiológico (Busoms, 2016).

La planta A. thaliana pertenece a la familia de las crucíferas (Brassicaceae), a la que pertenecen unas 4 mil especies (Poveda, 2018). Entre estas especies destacan algunas de interés agrícola como la col (Brassica oleracea) y el nabo (Brassica napus) (Valls, 2011). La especie protagonista de este artículo esta distribuida por todos los continentes (es cosmopolita), es una planta anual de pequeño tamaño, entre 10 y 30 cm (Povedad, 2018), presenta un ciclo de vida relativamente corto (unas 6 semanas) y es un organismo muy prolífico, siendo capaz de producir hasta 10000 semillas por individuo, las cuales son viables varios años. También es capaz de autofecundarse, es decir, es autógama (Busoms, 2016). Presenta 4 pétalos en las flores, las cuales son blancas, con forma de cruz (por esta razón pertenece a las crucíferas) (Poveda, 2018). Dichas flores son pequeñas y hermafroditas (órganos reproductores masculinos y femeninos). En cuanto al fruto, es una silicua de unos 4 cm de largo y 2 mm de ancho, pudiendo albergar hasta 30 semillas por silicua (Valls, 2011). Las semillas serán dispersadas por el viento, este tipo de dispersión es conocido como “dispersión anemócora”.

Arabidopsis
Representación gráfica de la planta Arabidopsis thaliana / Poveda, 2018.
Silicuas-y-semillas-de-A.-thaliana
Silicuas y semillas de A. thaliana / Poveda, 2018.

Esta planta, a simple vista, no parece gran cosa y mucho menos que tenga algún interés para el ser humano. Esto puede deberse a que no destaca visualmente para ser una especie ornamental y sus órganos no son atractivos para su consumo. No obstante, como os he dicho al principio, es un organismo modelo de los mas importantes y estudiados en investigación sobre biología molecular, genética y fisiología vegetal (Poveda, 2018). Es cierto que su uso en el laboratorio ha sido bastante tardío, y consolidado en la década de los años 80 (Valls, 2011). Arabidopsis thaliana  consta de 7 características principales por las que ha sido elegida organismo modelo: su pequeño tamaño y fácil manejo, su corto tiempo de generación, su autopolinización y número de semillas producidas, su pequeño genoma y su número reducido de cromosomas (Poveda, 2018). Estas características permiten que cultivarla en invernaderos y cámaras de cultivo sea bastante sencillo. Además su pequeño genoma, secuenciado completamente en el año 2000, permite su manipulación por ingeniería genética de manera fácil y rápida en comparación con otras especies de plantas (Valls, 2011).

Con esta especie se investigan muchos procesos biológicos. A nivel genético, gracias a la creación de mutantes, se han logrado desarrollar grandes conocimientos en el mundo vegetal, como en los procesos de germinación y floración, crecimiento radicular, síntesis de la pared celular, entre otros (Poveda, 2018). Sin embargo, la investigación con A. thaliana  también es muy útil en ecología, es decir, interacciones con otras plantas al rededor de su medio ambiente. A nivel ecológico se estudian las respuestas de dicha planta a condiciones estresantes de tipo abiótico (como condiciones de salinidad, sequía, heladas, etc.) o bien cómo reacciona ante ataques de patógenos y plagas. Un ejemplo de este tipo de investigaciones, a nivel ecológico, es el estudio realizado por  Sílvia Busoms y su equipo (2015) en Cataluña. Estos científicos estudian la tolerancia que presentan las poblaciones costeras de A. thaliana ante la salinidad del medio ambiente en el que se encuentran.

Para leer el capítulo anterior: capítulo 4.

Para leer mi artículo: “Descontaminación de suelos mediante el uso de plantas transgénicas”.

REFERENCIAS

Busoms, S.; Teres, J.; Huang, X.; Bomblies, K.; Dnaku, J.; Douglas, A.; Weigel, D.; Poschenrieder, C.; Salt, D. E. (2015). Salinity is an agent of divergent selection driving local adaptation of Arabidopsis thaliana to coastal habitatsPlant Physiology 168 (3): 915-929. doi: 10.1104/pp.15.00427.

Busoms, S (2016). “Arabidopsis thaliana, no sólo una planta de laboratorio. Importancia de las poblaciones silvestres catalanas.” UABDivulga [online]. Disponible en: https://www.uab.cat/web/detalle-noticia/arabidopsis-thaliana-no-solo-una-planta-de-laboratorio-importancia-de-las-poblaciones-silvestres-catalanas-1345680342040.html?noticiaid=1345695163636 [Último acceso: 21 Feb 2020].

Poveda J. (2018).  “Arabidopsis thaliana: la “mala hierba” que alcanzó la cima de la ciencia vegetal”. [online]. Disponible en: https://naukas.com/2018/01/11/arabidopsis-thaliana-la-mala-hierba-que-alcanzo-la-cima-de-la-ciencia-vegetal/ [Último acceso: 21 Feb 2020].

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 21 Feb 2020].

 

Los diferentes organismos modelo. Capítulo 4: levaduras

¿A quién no le gusta irse un domingo de cañas con los amigos o la familia, verdad? Aunque no a todos nos guste la cerveza, y me incluyo, también podemos disfrutar de la tradición “irse de cañas” pidiendo un buen vino o disfrutando de las tapas acompañadas con un buen trozo de pan, ¿verdad? Por si no los sabíais, tanto la cerveza como el pan y el vino proceden de las levaduras. “¿Pero, y eso qué es?” os estaréis preguntando. Bien, si seguís leyendo, este breve capítulo os ayudará a resolver esta duda.

Las levaduras son hongos unicelulares de muy pequeño tamaño (3-40 micrómetros), tan diminutas que no podemos verlas sin la ayuda de un microscopio. No obstante, si podemos ver agregados de levaduras. Aunque parezca mentira, estos pequeños microorganismos están en contacto con nosotros continuamente. Encontramos levaduras en plantas, animales e insectos, también en superficies como las cascaras de frutas e incluso en nuestra piel (Mejía & Saavedra). Se encuentran tanto en sistemas acuáticos como terrestres (Ainia, 2011). La palabra levadura procede del termino en latín “levare” (significa subir o levantar) ya que al añadir levadura a la harina se puede visualizar como la masa del pan se “levanta”. Otro nombre alternativo es “fermento” procedente del latín “fervere” (cuyo significado es hervir) proveniente del movimiento del mosto durante la producción de vino o cerveza (Valls, 2011).

La importancia de las levaduras radica en su larga relación con la sociedad humana, ya que estas han sido utilizadas en la industria, para producir alimentos, bebidas, fármacos y enzimas industriales. A pesar de su utilidad para la industria, también son un modelo de estudio para enfermedades como Alzheimer, Parkinson y cáncer (Mejía & Saavedra). Además gracias a su rápido crecimiento, las levaduras presentan ventajas en la producción de proteínas, ventaja que ha sido utilizada y estudiada con fines terapéuticos desde 1980, con la producción de proinsulina. Otras de las proteínas producidas mediante levaduras son la insulina y el factor de crecimiento epidérmico. (Mejía & Saavedra).

Sin embargo, las levaduras son mas conocidas por la producción de cerveza, pan y vino mediante técnicas de fermentación. Para quienes no lo sepáis, la fermentación es un proceso metabólico anaeróbico (en ausencia de oxigeno) realizado por bacterias y hongos. Estas técnicas son tan antiguas como la agricultura y la ganadería; ya se llevaban acabo bebidas fermentadas antes de Cristo en países como China, Irán y Egipto. Hasta el siglo XX, cuando la levadura fue observada como ser vivo, no se supo la razón científica de estas técnicas de fermentación. A partir de este siglo cobran gran importancia en el laboratorio convirtiéndose en organismo modelo y herramienta de laboratorio para estudiar la célula eucariota (Valls, 2011).

Saccharomyces cerevisiae

Saccharomyces cerevisiae. Foto de. Dr. A.V Carrascosa.
Imagen de Saccharomyces cerevisiae mediante microscopía óptica por contraste. Levadura utilizada para hacer vino Albariño / Dr. A.V. Carrascosa. CIAL (CSIC-UAM)

La especie más conocida y utilizada en los procesos industriales es Saccharomyces cerevisiae, cuyo nombre significa levadura comedora de azúcar, entre otros. Esta levadura fue seleccionada como organismo modelo a partir de 1930 (Mejía & Saavedra). Otras especies de importancias son S. bayanus y S. pastorianus (Ainia, 2011).

Hay cinco filos de hongos y los más abundante son los Ascomycota y Basidiomycota, conocidos como los “hongos verdaderos” (Grisales, 2017). El hongo S. cerevisiae pertenece al filo Ascomycota que incluye a más de 60000 especies, como las trufas, las colmenillas o el Penicillium, el hongo que produce la penicilina.

En 1996 se terminó la secuenciación completa del genoma de S. cerevisiae, siendo el primer organismo eucariota en ser secuenciado y actualmente es el genoma eucariota mejor conocido. Su genoma contiene unos 6000 genes y se conoce la función de casi todos ellos. Este genoma es unas cuatro veces mayor que el de E. coli, la bacteria del capitulo 3 de esta serie. (Valls, 2011).

Para leer el capítulo anterior: capítulo 3.

Para leer el capítulo siguientr: capítulo 5.

REFERENCIAS

Aina. (2011). “¿Por qué las levaduras son compuestos importantes para la industria?” Ainia insights. [online]. Disponible en: https://www.ainia.es/insights/por-que-las-levaduras-son-compuestos-importantes-para-la-industria/ [Último acceso: 13 Feb. 2020].

De Martin Barry, A. (2015). Capitulo 1, Aspectos generales del metabolismo de Saccharomyces cerevisiae. Control del metabolismo de en la síntesis de glutatión. Tesis doctoral inédita. Universidad de Granada. Disponible en: https://hera.ugr.es/tesisugr/15792390.pdf [Último acceso: 13 Feb. 2020].

Grisales, L. (2017). Hongos (reino Fungi): características y clasificación o tipos. Revista digital sobre animales y mascotas. naturaleza y Turismo. [online]. Disponible en: https://naturaleza.paradais-sphynx.com/fungi/hongos.htm [Último acceso 13 Feb. 2020].

Mejía, J. & Saavedra, A. Conociendo las Levaduras. Revista de divulgación Saber más UMSNH. [online]. Disponible en: https://www.sabermas.umich.mx/archivo/articulos/97-numero-131/193-conociendo-las-levaduras.html [Último acceso 12 Feb. 2020].

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso 13 Feb. 2020].

El ejercicio físico y los estímulos cognitivos podrían enlentecer el envejecimiento cerebral | madrimasd

Dos nuevos trabajos de científicos argentinos abren la puerta a futuras terapias encaminadas a restaurar la plasticidad cerebral durante el envejecimiento

Origen: El ejercicio físico y los estímulos cognitivos podrían enlentecer el envejecimiento cerebral | madrimasd