Contaminación por amianto

 Información preparada por la alumna  BELEN MONCALVILLO GONZALEZ  de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica.

El amianto o asbestos es un grupo de compuestos de silicatos de magnesio de cadena doble (Oury et al., 2014), que aparece habitualmente en baja concentración en rocas serpentínicas (Meyer, 1980). Es ubicuo prácticamente en todo el mundo y puede presentarse en múltiples variables (tremolita, crisotilo o amianto blanco, crocidolita o asbesto azul, entre otros). Se ha utilizado desde la época griega, pero su uso se generalizó durante el siglo XX. Su resistencia a la corrosión y degradación térmica, su resistencia tensil y su hábito fibroso lo convirtieron en un compuesto tan habitual en materiales de construcción y aislamiento de edificios, de la industria textil y de la naviera que llegó a denominárselo “mineral milagroso” (Oury et al., 2014).

A pesar de esta denominación, el riesgo del amianto para la salud se hizo evidente en pocas décadas. Alrededor del mundo se han registrado numerosos casos de altas mortalidades asociadas a la exposición a este material. Algunos ejemplos son: los alrededores de una explotación minera en Sudáfrica (Wagner et al., 1960); trabajadores de recubrimientos aislantes para edificios en Nueva York (Selikoff et al., 1964); varios tipos de industrias en Gran Bretaña (Doll, 1993); trabajadores de fábricas textiles en China (Yano et al., 2001); o una fábrica de cementos en Barcelona, que estuvo en activo desde 1907 hasta 1997 (Tarrés et al., 2009).

El amianto es un contaminante tóxico, es decir, un polutante. Se asocia principalmente a la contaminación atmosférica, ya que aparece en el aire en forma de micropartículas, provocadas por la erosión del viento o de otros agentes meteorológicos sobre el material y por los procesos industriales asociados a su manipulación (Oury et al., 2014). Por lo tanto, el amianto afecta principalmente a las vías respiratorias, causando irritaciones o asma. Una sobreexposición continuada a esta sustancia suele desencadenar cáncer de pulmón o mesotelioma de pleura (Wagner et al., 1960). Además, una vez dentro del organismo puede ser traslocado y causar cáncer del tracto intestinal (Oury et al., 2014). Más allá de su presencia en la atmósfera, las partículas de amianto terminan por depositarse en el suelo y los sistemas acuáticos (Mustapha et al., 2003), aumentando su capacidad de dispersión y pudiendo llegar a contaminar fuentes de abastecimeinto de agua y comida (Oury et al., 2014).

La contaminación por amianto, desde minas o fábricas, se produce de manera puntual y desciende a medida que aumenta la distancia al foco de emisión. Su incidencia se extiende frecuentemente dos kilómetros a la redonda, pero pueden encontrarse partículas de amianto hasta a cinco kilómetros (Magnani et al., 2000). Debido a su uso industrial, la contaminación en amianto se da principalmente en zonas urbanas. Llegó a ser tan generalizada, que en los años sesenta se detectó su presencia en el 20% de la población de Tejas y en la de Sudáfrica (Oury et al., 2014). Además, su peligrosidad se ve acentuada debido a que sus efectos en humanos pueden tardar entre 20 y 40 años en ser apreciables (Mustapha et al., 2003).

Como se ha explicado, debido a sus alarmantes riesgos, el amianto ha sido el foco de atención de numerosos estudios epidemiológicos. Incluso se ha realizado   experimentación animal, principalmente con ratas y ratones (Wagner et al., 1974; Walton, 1982; Doll, 1993; Landrigan et al., 2004) y lombrices de tierra (Schreier y Timmenga, 1986). Sin embargo, esta atención toxicológica ha reducido el estudio de su ecotoxicología y sus efectos sobre los ecosistemas son poco conocidos (Mustapha et al., 2003). Las partículas de amianto que llegan al suelo y al agua son susceptibles de incorporarse a organismos vivos. Igual que ocurre con el ser humano, la sobreexposición al amianto es letal para los animales estudiados (Schreier y Timmenga, 1986), pero pequeñas dosis no letales pueden acumularse a lo largo de la cadena trófica. Mustapha et al. (2003) comprobaron mediante biomonitorización en una zona de India que el amianto se encontraba presente en lombrices, caracoles y plantas, y que su concentración aumentaba en depredadores del ecosistema como ranas y peces, produciéndose un fenómeno de biomagnificación.

Por otra parte, la descontaminación del amianto suele centrarse en eliminar sus fuentes de emisión, es decir, retirar los productos que lo contienen (Oury et al., 2014). No obstante, aún no es posible eliminarlo de manera efectiva del medio natural. En yacimientos de amianto y suelos contaminados, se han intentado aplicar métodos de fitorremediación, pero el la vegetación tiene serias dificultades para establecerse en suelos serpentínicos (Meyer, 1980). Los estudios más recientes indican que la bioaumentación, enriqueciendo el suelo con los nutrientes necesarios, facilita este crecimiento de la vegetación. Las leguminosas y algunas plantas aromáticas son algunos grupos propuestos para secuestrar las partículas de amianto y evitar que pasen a cultivos agrícolas (Kumar y Maiti, 2015; Kumar et al., 2015).

En la actualidad, el amianto se ha eliminado de la mayoría de los procesos industriales, al menos en los países desarrollados. La Unión Europea restringió su uso, con el objetivo de eliminarlo progresivamente, en 1987 (Decreto 87/217/EECC). Otras potencias, como Estados Unidos o Australia, también se han hecho eco de ello en su legislación (Oury et al., 2014). A pesar de todo, el amianto continúa siendo un problema, dado que sus efectos en la salud humana pueden tardar varias décadas en ser apreciables y su impacto en los ecosistemas aún no está suficientemente estudiado.

 

Como curiosidad, aquí tenéis dos vídeos acerca de la contaminación ambiental del amianto:

  • Vertedero de amianto en Toledo (del minuto 59:30 al 1:13:40):

http://www.rtve.es/alacarta/videos/la-manana/manana-03-10-16/3742550/

  • Reportaje de Informe semanal de 2003 acerca de las muertes causadas por sobreexposición laboral al amianto en estibadores (descargadores de mercancías de barcos):

http://www.rtve.es/alacarta/videos/informe-semanal/fue-informe-amianto-muerte-blanca-2003/1896888/

 

BIBLIOGRAFÍA

European Union, Council Directive 87/217/EEC of 19 March 1987 on the prevention and reduction of environmental pollution by asbestos

Doll, R. (1993). Mortality from lung cancer in asbestos workers 1955. British journal of industrial medicine50(6), 485.

Kumar, A., & Maiti, S. K. (2015). Effect of organic manures on the growth of Cymbopogon citratus and Chrysopogon zizanioides for the phytoremediation of Chromite-Asbestos mine waste: A pot scale experiment. International journal of phytoremediation17(5), 437-447.

Kumar, A., Maiti, S. K., Prasad, M. N. V., & Singh, R. S. (2015). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. Journal of Soils and Sediments, 1-11.Landrigan, P. J., Lioy, P. J., Thurston, G., Berkowitz, G., Chen, L. C., Chillrud, S. N., … & Perera, F. (2004). Health and environmental consequences of the world trade center disaster. Environmental health perspectives112(6), 731.

Magnani, C., Agudo, A., Gonzalez, C. A., Andrion, A., Calleja, A., Chellini, E., … & Mirabelli, D. (2000). Multicentric study on malignant pleural mesothelioma and non-occupational exposure to asbestos. British Journal of Cancer83(1), 104.

Meyer, D. R. (1980). Nutritional problems associated with the establishment of vegetation on tailings from an asbestos mine. Environmental Pollution Series A, Ecological and Biological23(4), 287-298.

Musthapa, M. S., Ahmad, I., Trivedi, A. K., & Rahman, Q. (2003). Asbestos contamination in biota and abiota in the vicinity of asbestos-cement factory.Bulletin of environmental contamination and toxicology70(6), 1170-1177.

Oury, T. D., Roggli, V. L., & Sporn, T. A. (2014). Pathology of asbestos-associated diseases. New York, NY: Springer.

Schreier, H., & Timmenga, H. J. (1986). Earthworm response to asbestos-rich serpentinitic sediments. Soil Biology and Biochemistry18(1), 85-89.

Selikoff, I. J., Churg, J., & Hammond, E. C. (1964). Asbestos exposure and neoplasia. Jama188(1), 22-26.

Tarrés, J., Abós-Herràndiz, R., Albertí, C., Martínez-Artés, X., Rosell-Murphy, M., García-Allas, I., … & Orriols, R. (2009). Asbestos-related diseases in a population near a fibrous cement factory. Archivos de Bronconeumología ((English Edition))45(9), 429-434.

Wagner, J. C., Sleggs, C. A., & Marchand, P. (1960). Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province.British journal of industrial medicine17(4), 260-271.

Yano, E., Wang, Z. M., Wang, X. R., Wang, M. Z., & Lan, Y. J. (2001). Cancer mortality among workers exposed to amphibole-free chrysotile asbestos.American journal of epidemiology154(6), 538-543.

Wagner, J. C., Berry, G., Skidmore, J. W., & Timbrell, V. (1974). The effects of the inhalation of asbestos in rats. British journal of cancer29(3), 252.

Walton, W. H. (1982). The nature, hazards and assessment of occupational exposure to airborne asbestos dust: a review. Annals of occupational hygiene,25(2), 117-119.

Contaminación electromagnética

 Información preparada por la alumna  Mª DE LOS ANGELES CARMEN ALONSO  de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica.
 

La contaminación electromagnética está causada por la radiación que emiten los equipos electrónicos, las líneas de alta tensión, los transformadores, los radares, las antenas de telefonía móvil o los electrodomésticos.

Los seres vivos han estado sometidos durante millones de años a influencias magnéticas naturales debido al campo magnético que rodea el planeta, la radiación proveniente del Sol o las descargas eléctricas que se producen en las tormentas.

En siglo XIX se comienza la instalación de las primeras estaciones de producción y distribución de electricidad en la sociedad industrial, pero no es hasta el siglo XX cuando se produce el fenómeno de contaminación electromagnética.

Las primeras emisiones de radiofrecuencias provenían de las antenas de radio y televisión, que se colocaban en zonas elevadas y lejos de núcleos de población. En los años 90, con el desarrollo de las telecomunicaciones, se ha incrementado en varios órdenes de magnitud la contaminación electromagnética en las grandes ciudades.

¿Qué efectos tiene sobre los seres vivos?

La respuesta de un sistema biológico a un campo electromagnético depende de la potencia de la radiación y de la frecuencia de la emisión. Sin embargo, uno de los problemas que surgen a la hora de valorar los efectos es que cada individuo posee un determinado grado de sensibilidad a la radiación electromagnética, de tal modo que algunos individuos pueden estar expuestos a niveles de radiación más elevados sin presentar daños, mientras que niveles de radiación semejantes pueden ser a medio y largo plazo letales para otros individuos (Luquin, 2013).

En los seres humanos las ondas electromagnéticas generadas por las corrientes eléctricas y por las microondas interfieren y distorsionan el funcionamiento normal del organismo (Acuña-Castroviejo, 2006), generando trastornos neurológicos, mentales, cardiopulmonares, reproductivos, dermatológicos, hormonales e inmunológicos, así como un incremento del riesgo de algunos tipos de cáncer.

Por otro lado, hay que tener en cuenta que no sólo el ser humano va a sufrir los efectos de la sobreexposición a las ondas electromagnéticas. En los últimos años se vienen realizando estudios en aves migratorias, ya que se cree que también podrían verse afectadas por la radiación electromagnética puesto que su movilidad y su costumbre de posarse en las antenas las hace vulnerables  (Balmori, 2004).

Las aves migratorias pueden orientarse de varias maneras. Uno de los mecanismos de orientación que utilizan es guiarse por el campo magnético terrestre (Mouritsen, 2011). Aunque en la actualidad todavía se desconocen los mecanismos neurofisiológicos que permiten a las aves percibir el campo magnético terrestre, se sabe que realizan esta función en una región del cerebro especializada (Manuela, Z,  2009).

Estudios realizados demuestran que las radiaciones electromagnéticas pueden tener consecuencias para las aves migratorias, puesto que si la radiación electromagnética interfiere en el mecanismo de orientación magnética, sus posibilidades de sobrevivir al viaje migratorio podrían verse reducidas, existiendo un efecto mayor de desorientación en las zonas urbanas que en las zonas rurales (Svenja et al, 2004).

Conclusiones

El desarrollo de las nuevas tecnologías y la expansión de las telecomunicaciones han intensificado las radiaciones electromagnéticas que nos rodean.

La contaminación electromagnética es un tipo de contaminanción que no es visible, pero hay estudios que demuestran que es la causante de problemas de salud para la población que vive más expuesta a la radiación. Aunque todavía no se han demostrado efectos claros sobre otros organismos, si que se cree que puede dificultar la migración de las aves.

Los expertos aportan opiniones contradictorias acerca de si la radiación electromagnética causa efectos en los seres vivos. Además, los estudios se suelen realizar acerca de la contaminación electromagnética causada por las antenas de telefonía y las líneas de alta tensión, pero pocos estudios se han realizado sobre la contaminación generada por las redes WiFi, los teléfonos inalámbricos o los electrodomésticos del interior de las viviendas o lugares de trabajo.

Por todo ello, con los datos con los que contamos a día de hoy, no se conocen los efectos reales de la contaminación electromagnética en los seres vivos.

Bibliografía

Acuña-Castroviejo, D. (2006). Informe científico sobre el efecto de los campos electromagéticos en el sistema endocrino humano y patología asociadas. Instituto de biotecnología. Universidad de Granada.

Balmori, A. (2004). Posibles efectos de las ondas electromagnéticas utilizadas en la tecnología inalámbrica sobre los seres vivos. Ardeola: revista ibérica de ornitología, 51(2), 477-490.

Luquin Bergareche, R. (2013). Contaminación por radiación electromagnética en personas vulnerables: tutela preventiva y generación de otras fuentes de energía. Congreso Internacional de Energías Renovables y Cambio Climático. Universidad Pública de Navarra.

Manuela, Z., Dominik, H., Christine M. H., Svenja, E., Nils-Lasse, S., Jörg, H., Simon W., David, D., Dmitry, K., Martin, W., & Henrik, M. (2009). Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461, 1274-1277.

Mouritsen, H. Chernetsov, N., (2011). Long-distance navigation and magnetosensory mechanisms in migratory songbirds.

Svenja, E., Nils-Lasse, S., Nele, L., Christine Maira, H., Manuela, Z., Andreas, M., Dana, E., Achim, K., P. J. Hore & Henrik, M., (2014). Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353-356.

Contaminación por microplásticos

 Información preparada por la alumna   SARA MARIA FERNANDEZ SILES de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica.
 

El plástico es una clase de polímeros orgánicos sintéticos compuesto de moléculas largas, en forma de cadena y con un alto peso molecular. Aunque es de naturaleza heterogénea, muchas de las clases de plástico se componen de hidrocarburos, los cuales son típicamente derivados de las materias primas de los combustibles fósiles. La contaminación por microplásticos es uno de los problemas más importantes del medio acuático, siendo creciente y global. Provienen de productos cosméticos, pinturas, revestimientos y pellets industriales, así como de la propia descomposición del plástico de mayor tamaño.

Sus dimensiones son de menos de 5 mm, por lo que se escapan de las depuradoras y van a parar a los océanos junto con millones de toneladas de residuos de este mismo material, que han ido acumulándose durante al menos cuatro décadas. Este aumento desmedido en todos los océanos y mares del mundo, es una gran preocupación que debe hacer que nos planteemos sobre sus posibles efectos adversos en los ecosistemas marinos y en la cadena trófica.

Recientemente los Estados Unidos de América reaccionó ante este gran problema por la contaminación existente en Grandes Lagos, y declaró que a partir del 1 de julio del año 2016 se hará vigente la ley que prohíba las microesferas de plástico en productos de cosméticos. A esta medida, también se ha unido el Reino Unido que planea hacerlo antes de que finalice dicho año. Aunque aún no hay estudios que demuestren cuales son los efectos potenciales de este material sobre la salud humana, si se ha podido comprobar que es tóxico para los organismos, y que tiene una gran capacidad de adsorción de los polutantes orgánicos persistentes (POPs). Este hecho hace que exista mayor propensión de bioacumulación de POPs en los organismos marinos. Es bien sabido, que estos últimos contaminantes se biomagnifican en la cádena trófica y producen serias alteraciones en el sistema endocrino.

Se ha documentado la ingestión de microplásticos en más de 200 especies acúaticas, y aunque aún hay pocos, cada vez son más los estudios ecotoxicológicos publicados. En uno de estos estudios se demostró que las microesferas de poliestireno pueden ser ingeridas e inhaladas por el cangrejo común (Carcinus maenas), afectándole significativamente en sus niveles de oxígeno, que aumentaron, así como la disminución de los iones de sodio y el incremento de los iones de calcio en la hemolinfa. Sin embargo estos niveles volvían a la normalidad unas horas después de retirarles las microesferas.

En otra reciente investigación sobre los efectos producidos por la ingestión de microesferas de poliestireno en rotíferos como Brachionus koreanus, se comprobó una reducción en la fecundidad, tasa de reproducción, crecimiento de individuo y esperanza de vida. Estos mismos efectos adversos también se observaron en Daphnia Magna de agua dulce.

En un bioensayo realizado a partir de un mesocosmos se comprobaron los efectos causantes de tres tipos de microplásticos: uno biodegradable como el ácido de poliláctico (PLA) y dos convencionales como el polietileno (PE) y el cloruro de polivinilo (PVC) a concentraciones crecientes, sobre los gusanos marinos Arenicola marina. Se concluyó que tanto el microplastico convencional como el biodegradable afectaban a la salud y alteraba el comportamiento de los gusanos, pero además reducía la productividad primaria de los hábitats. Sin embargo, de todos los tipos de plástico, era el PVC el que producía los efectos más fuertes, pudiendo ser por la lixiviación química de los monómeros de cloruro de vinilo residual en los tejidos, produciendo en algún caso la mortalidad, reducción de la alimentación y una disminución de la inmunidad.

Una de las primeras investigaciones realizadas sobre el efecto de los microplásticos en una población de Scenedesmus obliquus,un microalga verde, se comprobó que reduce su crecimiento así como sus concentraciones de clorofila, produciéndole un aumento del estrés oxidativo, ya que la sustancia que desprende el plástico al descomponerse, penetra y daña las paredes celulares del alga.

En conclusión, esta contaminación “emergente” es muy poco estudiada, pero su continua presencia en el medio acuático los hace pseudo-persistentes ya que los organismos se encuentran en continua exposición. Por ello, deberían realizarse bioensayos con modelos más complejos, donde se puedan realmente determinar los efectos adversos de estos contaminantes sobre los ecosistemas y la cadena trófica. Además, se requiere de una urgente y efectiva gestión en cuanto a residuos plásticos, con mejores estrategias de prevención y mitigación.

BIBLIOGRAFIA

Bessenling, E., Wang, B., Lürling, M., & Koelmans, A. (2014). Nanoplastic affects growth of S.obliquus and reproduction of D.magna. Environmental Science & Technology, 48(23).

James, A., Watts, R., Urbina, M., Goodhead, R., Moger, J., Lewis, C., & Galloway, T. (2016). Effect of microplastic on the gills of the Shore Crab Carcinus maenas. Environmental Science & Technology.

Jeong, C., Won, E., Kang, H., Lee, M., Hwang, D., Hwang, U., Zhou, B., Souissi, S., Lee, S., & Lee, J. (2016) Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotife (Brachionus koreanus). Environmental Science & Technology.

Koelmans, A., Besseling, E., & Foekema, E. (2014). Leaching of plastic additives to marine organisms. Environmental Pollution, 187, 49-54.

McGoran, A., Clark, P., & Morritt, D. (2016). Presence of microplastic in the digestive tracts of European flounder, Platichthys flesus, and European smelt, Osmerus eperlanus, from the River Thames. Environmental Pollution.

Senga, D., Boots, B., Sigwart, J., Jiang, S., & Rocha, C. (2016). Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environmental Pollution 208, 426-434.

Sjollema, S., Redondo-Hasselerharm, P., Leslie, H., Kraak, M., & Vethaak., A. (2015). Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicology, 170.

Enlaces de noticias:

http://www.lavanguardia.com/ciencia/planeta-tierra/20161003/41741658646/cerco-microplasticos-cosmeticos-reino-unido.html

http://www.larevista.com.mx/internacional/los-rios-y-lagos-de-estados-unidos-estan-cargados-de-microplasticos-diminutos-y-contaminantes-5249