Aprende gratis en Coursera: cursos gratuitos para universitarios

Coursera, una plataforma de cursos online denominados MOOC’s, ofrece a estudiantes universitarios y de facultades aprender gratis online. La fecha límite para inscribirse gratis en alguno de los más de 3800 Cursos, Proyectos guiados, Especializaciones o Certificados profesionales es hasta el 30 de septiembre de 2020.

Los cursos abarcan temáticas diversas como biología, arte, idiomas, finanzas, programación, tecnología, medio ambiente, educación, psicología, big data…

Os dejo el link para inscribirse (debéis usar el correo electrónico académico): https://coursera.org/share/1f69e6fc256d35fb1d4862defa95b6c6

Para todos los estudiantes de Biología y ramas afines os recomiendo los siguientes cursos:

  • Programa Especializado formado por 7 cursos: Bioinformatics – University of California San Diego
  • Programa Especializado formado por 4 cursos: Plant Bioinformatic Methods – University of Toronto
  • Programa Especializado formado por 6 cursos: Systems Biology and Biotechnology – Icahn School of Medicine at Mount Sinai
  • Programa Especializado formado por 8 cursos: Genomic Data Science – Johns Hopkins University
  • Curso Epigenetic Control of Gene Expression – The University of Melbourne
  • Curso Introduction to the Biology of Cancer – Jonhs Hopikns University
  • Curso Astrobiology and the Search for Extraterrestrial Life – The University of Edinburgh
  • Curso Dino 101: Dinosaur Paleobiology – University of Alberta
  • Curso Chimpanzee Behavior and Conservation – Duke University
  • Curso Tropical Parasitology: Protozoans, Worms, Vectors and Human Diseases – Duke University

¡¡Y muchos más!!

“Prueban un prometedor análisis de sangre para detectar alzhéimer hasta 20 años antes” | madrimasd

La comunidad científica ha cosechado un varapalo tras otro en la lucha contra el alzhéimer. Sigue sin haber una cura, pero la posibilidad de un diagnóstico rápido está cada vez más cerca.

Puedes leer la noticia completa en: https://cutt.ly/2s7XP2r

Fuente de la imagen: https://cutt.ly/As5X62v

“Cóctel de anticuerpos: el arma contra la Covid a la espera de la vacuna” | madrimasd

Científicos de EEUU están desarrollando este tratamiento mediante el aislamiento de los anticuerpos más efectivos.

Lee la noticia completa en: https://cutt.ly/ksK2sFb

Fuente de la imagen: https://cutt.ly/3sK3WV9

“España y EE UU desarrollan una técnica única para ver el genoma humano” | madrimasd

Una herramienta permite desarrollar por primera vez un mapa completo de la complejísima estructura tridimensional de la información genética, esencial para entender nuestra biología y todas las enfermedades.

Puedes leer el artículo completo en: https://cutt.ly/ssKM3ol

Fuente de la imagen: https://cutt.ly/UsKMSzN

“Descubren una gran diversidad de elementos genéticos móviles en bacterias patógenas” | madrimasd

Estos resultados abren un nuevo campo de investigación en estos elementos de gran diversidad que se encuentran en una amplia variedad de bacterias patógenas.

Las pipolinas son un grupo de elementos genéticos móviles, es decir, fragmentos de DNA que pueden ‘saltar’ entre bacterias. Este grupo de elementos móviles bacterianos, al igual que otros (como plásmidos, integrones o profagos) son muy abundantes en microorganismos, pero lo que diferencia a las pipolinas es la presencia de DNA polimerasas que pueden replicar DNA sin necesidad de un cebador o ‘primer preexistente’, lo cual les confiere gran potencial biotecnológico.

Lee la noticia completa en: https://www.madrimasd.org/notiweb/noticias/descubren-una-gran-diversidad-elementos-geneticos-moviles-en-bacterias-patogenas

Fuente de la imagen: https://cutt.ly/asnP2vp

¿Por qué huelo a pescado? La trimetilaminuria o síndrome del olor a pescado, una enfermedad rara.

La trimetilaminuria o síndrome del olor a pescado es una enfermedad rara de origen genético que provoca un fuerte olor corporal a pescado podrido en los pacientes que la sufren. Fue descrita por primera vez en 1970 y afecta a 1 de cada 40.000 personas. Es un defecto genético no ligado al sexo pero se diagnostica en mayor medida en las mujeres (Álvarez et al., 2009).

¿Qué es una enfermedad rara?

Un enfermedad rara o poco frecuente es aquella que presenta una baja prevalencia en la población. En Europa se considera rara aquella enfermedad que afecta a menos de 5 casos por cada 10.000 habitantes. Hasta el momento se han identificado más de 6.000 enfermedades raras (EURORDIS, 2020).

Se estima que entre el 3,5 y el 5,9% de la población mundial está afectada por estas enfermedades. En cuanto a su causa, más del 70% tienen origen genético, como es el caso de la trimetilaminuria (Wakap et al., 2019).

¿Por qué se produce ese olor desagradable?

La sustancia responsable de este olor es la trimetilamina (TMA), una sustancia volátil con olor a pescado podrido. La TMA es generada por las bacterias intestinales a partir de moléculas como la colina o carnitina presentes en los alimentos que consumimos habitualmente (Cho y Caudill, 2017).

En condiciones normales, la TMA es absorbida por las células intestinales, viajando por la vena porta hepática hasta el hígado donde las FMO, una familia de enzimas que oxidan xenobióticos y drogas para facilitar su excreción, cataliza la conversión de la TMA en TMAO (trimetilamina N-óxido, un compuesto sin olor). Este TMAO es excretado principalmente por la orina (Cho y Caudill, 2017).

Cuando existe una mutación en los genes que codifican para la FMO, concretamente la FMO3, la cantidad de esta enzima se reduce. Esto provoca un descenso en la transformación de TMA a TMAO, por lo que el cuerpo excreta la TMA directamente por el sudor, orina, aliento y otras secreciones, manifestándose un olor fuerte similar al pescado podrido (Cho y Caudill, 2017).

El diagnóstico de esta enfermedad se puede realizar midiendo los niveles de TMA en la orina que en el caso de los pacientes con esta condición son mucho más elevados que en pacientes sanos. Esta medición se realiza tras la ingesta de una sobrecarga de TMA (600 mg de TMA). Posteriormente se puede realizar un estudio genético para detectar con exactitud la mutación presente (Álvarez et al., 2009).

¿Cómo se hereda la enfermedad?

La enzima FMO3 está codificada por el gen FMO3, localizado en el brazo largo del cromosoma 1 (Álvarez et al., 2009).

En un trastorno autosómico recesivo, es decir, deben estar presentas dos copias de un gen anormal para que se desarrolle esta enfermedad. Por tanto, la madre y el padre deben ser al menos portadores del gen defectuoso. Si solo uno de los padres posee el gen defectuoso, el hijo puede heredar ese gen pero no padecer la enfermedad porque posee una copia no defectuosa del otro padre (Álvarez et al., 2009).

En este esquema vemos cómo se da la herencia de esta enfermedad cuando los padres son portadores pero no la padecen:

aaaaaaaaaaaaaaaa

¿Existen grados de afección?

Sí, la trimetilaminuria es una condición genética en la que el gen que codifica para la enzima FMO3, la cual oxida la TMA, es defectuoso. Este gen es altamente polimórfico, lo que permite una actividad enzimática variable y, por tanto, un desarrollo de la enfermedad más o menos grave según la mutación presente (Álvarez et al., 2009).

En otras palabras, si la mutación es leve la cantidad de enzima generada está cercana a valores normales por lo que el olor será más discreto. En cambio, en los casos en los que la mutación es grave y no hay apenas generación de la enzima, la TMA no va a poder ser transformada y el olor será muy intenso (Álvarez et al., 2009).

Las mutaciones P153L y E305X se relacionan con los casos más graves de esta enfermedad (Hernandez et al., 2003).

¿Cómo afecta esta enfermedad a los pacientes? ¿Existe cura?

La excreción de grandes cantidades de TMA en forma de orina, sudor, aliento y otras secreciones corporales no supone toxicidad para el cuerpo. El síntoma principal es este fuerte olor desagradable. Por tanto, el principal problema que sufren los pacientes es a nivel psicológico y social.

Las consecuencias psicológicas asociadas a esta enfermedad pueden ser graves (trastornos de la personalidad, obsesión por la higiene corporal, cuadros de ansiedad y síndromes depresivos graves) debido al aislamiento y el rechazo social. Esto impide a los pacientes el desarrollo de una vida normal en muchos de los casos (Álvarez et al., 2009).

Actualmente el tratamiento consiste en un control de la dieta, reduciendo los alimentos que poseen precursores de la TMA como la colina. Esta dieta es baja en pescados, crustáceos, huevos, carne, algunas legumbres y verduras y debe ser pautada por un nutricionista. Se ha visto una considerable mejora en la calidad de vida de los pacientes que siguen estas pautas (Álvarez et al., 2009).

También se utilizan algunos fármacos que interfieren en la producción de TMA por parte de la microbiota intestinal pero no se aconseja su uso continuado (Álvarez et al., 2009).

Testimonios:

Aquí os muestro un par de testimonios de dos mujeres, Kelly y Michelle, que sufren la enfermedad en distinto grado:

Vídeo 1 (en inglés): Kelly posee esta rara condición que limita su vida diaria. El acoso escolar fue una constante en su infancia y adolescencia. Ella no nota otros síntomas aparte del olor pero los efectos secundarios que esta condición conlleva son ansiedad y aislamiento social. De hecho, Kelly trabaja en el turno de noche para evitar coincidir con tanta gente ya que en el trabajo ha recibido quejas de sus compañeros.

Vídeo 2 (subtitulado en castellano): En algunas personas el olor es constante mientras que en otras es intermitente, como en el caso de Michelle. Ella también sufre trimetilaminuria pero su olor solo se manifiesta durante la menstruación. Según el doctor Robin Lachmann, experto en enfermedades metabólicas, los valores normales de TMA en la orina varían entre 2,5 y 10,9. Las primeras muestras enviadas por Michelle cuadruplicaban esta cantidad pero se redujeron significativamente a valores casi normales tras seguir una estricta dieta baja en producción de TMA.

 

En conclusión, las enfermedades raras tienen una baja prevalencia en la población y una sintomatología muy variada que dificulta y retrasa su diagnóstico. Los conocimientos e investigación son limitados, lo que dificulta enormemente la vida de los pacientes y sus familias al no tener un tratamiento y en muchos casos, ni siquiera un diagnóstico.

Es muy importante dar a conocer estas enfermedades a la sociedad y promover la colaboración con asociaciones dedicadas a la investigación en métodos de diagnóstico y tratamientos, terapias rehabilitadoras, suministro de fármacos en familias con pocos recursos… Si quieres colaborar (donaciones, voluntariado, eventos…) puedes hacerlo en la Federación Española de Enfermedades Raras (FEDER). Os dejo su página web donde podéis ver toda la información: https://enfermedades-raras.org/index.php

BIBLIOGRAFÍA

Álvarez, T. M., Guardiola, P. D., Roldán, J. O., Elviro, R., Wevers, R., y Guijarro, G. (2009). Trimetilaminuria: el síndrome de olor a pescado. Endocrinología Y Nutrición, 56(6), 337-340.

Cho, C. E. y Caudill, M. A. (2017). Trimethylamine- N -Oxide: Friend, Foe, or Simply Caught in the Cross-Fire?. Trends in Endocrinology & Metabolism, 28(2), 121-130.

EURORDIS (2020). ¿Qué es una enfermedad rara?. Última visita el 25 de Julio de 2020 de: https://cutt.ly/GsgnSzd

Hernandez, D., Addou, S., Lee, D., Orengo, C., Shephard, E. A., y Phillips, I. R. (2003). Trimethylaminuria and a human FMO3 mutation database. Hum Mutat, 22(3), 209-213.

Wakap, S. N., Lambert, D. M., Olry, A., Rodwell, C., Gueydan, C., Lanneau, V., … Rath, A. (2019). Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. European Journal of Human Genetics, 28(2), 165-173.

Fuente de la imagen de cabecera: https://cutt.ly/8a2veR4

“Un español detrás del modelo computacional de la célula de E. coli que permitirá profundizar en el estudio de la resistencia bacteriana y diseñar mejores antibióticos” | madrimasd

Javier Carrera es el artífice del primer motor tecnológico capaz de integrar y simular todo el conocimiento acumulado durante décadas en la bacteria mejor estudiada en biología molecular y celular.

Lee la noticia completa en: https://cutt.ly/TsgGD67

Fuente de la imagen: https://phil.cdc.gov/details.aspx?pid=10068

Los diferentes organismos modelo. Capítulo 7: insectos

Los insectos son el grupo más numeroso del reino animal, hay un millón de especies descritas y se estima que hay entre 6 y 10 millones de especies sin descubrir (Wilson, 2015). Los insectos representan el 80% de las especies animales conocidas en la actualidad (García et al, 2012). Fueron los primeros animales en volar y son los únicos invertebrados con dicha capacidad (Wilson, 2015). En cuanto a su taxonomía, pertenecen al filo Arthropoda, al subfilo Hexapoda y a la clase Insecta.  

Dentro del filo Artropodos, son el subfilo mas importante y a su vez, esta clase se ha dividido en al menos 30 ordenes(Wilson, 2015). No obstante, su clasificación es bastante compleja a causa de su gran diversidad. La clase insecta se divide en dos subclases, en función de la presencia y estructura de las alas García et al, 2012):

  • Subclase Apterigotos: insectos sin alas, se trata de un grupo menos evolucionado. No presentan metamorfosis.
  • Subclase Pterigotos: insectos con alas o secundariamente ápteros, son un grupo más evolucionado, más especializados y más abundante que el de los Apterigotos. Se divide en dos infraclases:
    • Neópteros: las alas están plegadas hacia atrás.
    • Paleópteros: no plegan las alas sobre el abdomen.
collage
Insectos. A: Escarabajos, B: tijereta, C: Mosca, D: chinche, E: abeja, F: mariposa, G: saltamontes, H: caballito del diablo. / Pixabay.com. Collage por Gómez, M (2020).

Dentro de los neópteros, los ordenes mas importantes son: coleópteros (escarabajos, gorgojos, mariquitas, cantáridos, etc), dermápteros (tijeretas), dípteros (moscas y mosquitos), hemípteros (chinches y cigarras), himenópteros (abejas, avispas y hormigas), lepidópteros (mariposas y polillas) y ortópteros (saltamontes y grillos). En paleópteros, destaca el orden odonatos (libélulas y caballitos del diablo) (García et al, 2012 & Contreras, 2014).

Los insectos presentan una anatomía externa común, presentan un exoesqueleto compuesto por placas duras, impermeables y ligeras llamadas escleritos, unidas por articulaciones flexibles. Su cuerpo esta diferenciado en tagmas (García et al, 2012):

aparatosbucales
Sistemas bucales de insectos
  • Cabeza (1 par de antenas, ojos compuestos, hasta 3 ocelos y diversos aparatos bucales).
  • Torax (3 segmentos; 3 pares de patas y hasta 2 pares de alas).
  • Abdomen (9 -11 segmentos con apéndices muy reducidos o ausentes, a veces 2 a 3 cercos).

En cuanto a los sistemas bucales, se pueden diferenciar 4 básicos: (A) aparato masticador ej., ortópteros), (B) cortador-chupador (ej., himenópteros), (C) chupador en espiritrompa (lepidópteros) y (D) chupadorr (ej., dípteros).

Los insectos respiran por un sistema de tráqueas, por su sistema circulatorio circula hemolinfa. Normalmente son ovíparos, y la mayoría no suelen cuidar los huevos hasta su eclosión. Tras la eclosión, muchos  sufren metamorfosis (Contreras, 2014). Por ejemplo los saltamontes experimentan una metamorfosis incompleta, en estado juvenil (ninfa) es muy parecido al adulto pero en miniatura. En cambio, las mariposas sufren una metamorfosis completa, la cría (larva) pasa por cuatro fases distintas hasta alcanzar el aspecto adulto (Wilson, 2015).

Los insectos son muy diversos en su modo de vida. Han surgido en tierra firme, pero tienen una gran capacidad de adaptación y por eso se pueden encontrar en zonas de agua dulce y costeras, en desiertos, en las cumbres más elevadas, etc. (García et al, 2012). También existen insectos parásitos como los piojos o las ladillas. Sin embargo, dado que no pueden sobrevivir a la congelación, no hay insectos en los polos. En las zonas tropicales es donde se encuentra la mayor diversidad de insectos (Contreras, 2014).  Sin embargo, sí hay un insecto capaz de habitar en la Antártida, el insecto  Belgica antárctica (Alvarez, 2018).

Los insectos no se deben confundir con los arácnidos, escorpiones, crustáceos o ciempiés que también son artrópodos, pero no insectos. El insecto más pequeño mide alrededor de 150 micrómetros, mientras que el más grande, durante el carbonífero (hace 350 ma.) llegó a medir 75 cm (Contreras, 2014).

Drosophila melanogaster

Drosophila melanogaster es conocida como la mosca de la fruta o del vinagre. Esta especie es un pequeño insecto dentro del orden dípteros (Valls, 2011). Los dípteros presentan ojos compuestos grandes y en general, 3 ocelos. Un aparato bucal chupador-picador. Las alas anteriores son transparentes y presentan poca venación, mientras que las posteriores están modificadas en halterios o balancines (García et al, 2012). Las moscas de género Drosophila son unas 900 especies de pocos milímetros distribuidad por todo el planeta, salvo en climas extremos. Drosophila melanogaster  se alimenta de las colonias de levadura que crecen encima de manzanas, uvas, plátanos y otras frutas dulces (Valls, 2011).

Captura de pantalla 2020-04-26 a las 16.32.08
Fotografía de un díptero, en vista dorsal (García et al, 2012).

La mosca de la fruta es uno de los organismos modelo con mayor renombre en la investigación. Este organismo lleva más de cien años dentro del laboratorio. Inicialmente se uso para experimentos sobre evolución, dado su corto ciclo de vida (10-15 días) permitía estudiar la aparición y transmisión de mutaciones en generaciones sucesivas, sometidas a diferentes condiciones ambientales. Posteriormente se vio la idoneidad de esta especie para estudios genéticos. A partir de las moscas mutantes, Thomas H. Morgan, Alfred Sturtevant, Calvin B. Bridges y Hermann Müller  realizaron diversos experimentos, los cuales constituyen el cuerpo de la Teoría cromosómica de la Herencia (Valls, 2011).

Hoy en día, este organismo esta siendo muy útil en los estudios del cáncer, en los procesos de formación de tumores y metástasis. También permite estudiar temas relacionados con la conducta, algunos de estos  estudios se centran en los ritmos circadianos entre actividad e inactividad, otros se fijan en aspectos como el aprendizaje y la memoria a partir de las reacciones olor y el gusto. También conductas relacionadas con la acción a las drogas y el alcohol, para determinar qué mecanismos celulares y moleculares básicos que hay detrás de las conductas adictivas (Valls, 2011).

Capítulo 6.

REFERENCIAS

Alvarez, J (2018).El único insecto de la Antártida, que puede sobrevivir dos años congelado, es también el único animal terrestre que vive allí. La brújula verde. Disponible en: https://www.labrujulaverde.com/2018/05/el-unico-insecto-de-la-antartida-que-puede-sobrevivir-dos-anos-congelado-es-tambien-el-unico-animal-terrestre-que-vive-alli [Último acceso: 26 Abr. 2020].

Contreras, R. (2014). Los insectos. La guía. Disponible en: https://biologia.laguia2000.com/zoologia/los-insectos [Último acceso: 26 Abr. 2020].

García, A., Outerelo, R., Ruiz, E., Aguirre, J., Almodóvar, A., Alonso, J., Benito, J., Arillo, A. (2012). Prácticas de Zoología Estudio y diversidad de los Artrópodos Insectos. Reduca (Biología). Serie Zoología. 5 (3): 42-57.

Wilson, E. (2015). Insectos (hacia 400000000 a C.). En: Gerald, M. & Gerald, G. (eds). El libro de la biología. Del origen de la vida a la epigenética, 250 hitos de la historia de la biología: 36. Librero, AB Kerkdriel, Países Bajos.

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 26 Abr. 2020].

Idean en la URJC un nuevo método de detección rápida y económica de Covid-19

Este método, que está en fase de desarrollo, podría ayudar a los sanitarios a reconocer en cuestión de minutos los casos de Covid-19

Origen: Idean en la URJC un nuevo método de detección rápida y económica de Covid-19 |eldiario.es

Los diferentes organismos modelo. Capítulo 6: nematodos

Caenorhabditis-elegans. Juergen Berger.
Imagen de microscopía electrónica del nemátodo Caenorhabditis elegans. Fuente: Juergen Berger / Max Planck Institute for Developmental Biology, Tübingen, Alemania

Los nematodos son gusanos de pequeño tamaño (0,1 – 2,5 mm) con un cuerpo alargado y cilíndrico, no segmentado, que presentan simetría bilateral (Gil Recio, 2016). El filo Nematoda consta de más de 25000 especies descritas, aunque se estima que podría haber hasta un millón de especies, siendo el cuarto filo más grande del reino Animalia (Khan, 2017). Se han adaptado prácticamente a cualquier ecosistema, encontrándose en agua salada y dulce, en tierra en regiones tropicales, polares e incluso en alta montaña. Casi la mitad de los nematodos son parásitos, incluyendo especies patógenas para el ser humano (Gil Recio, 2016).

Imagen 1
Imagen donde se ven las tres capas embrionarias dentro de la Gástrula

Los nematodos son animales triblásticos (Gil Recio, 2016), es decir, durante su desarrollo embrionario se diferencian tres capas embrionarias: endodermo, ectodermo y mesodermo. Estas capas darán lugar a los tejidos y órganos de los animales adultos. En cambio, los Diblásticos solo presentan las dos primeras capas embrionarias. Esta es una forma de clasificar a los animales en función de su desarrollo embrionario.  Una característica principal y que les diferencia de otros filos de gusanos es que son psudocelomados. Esto significa que su mesodermo invade parcialmente el blastocele (cavidad que se genera durante la blastulación) durante el desarrollo embrionario quedando reducido a espacios intersticiales (Khan, 2017).

Captura de pantalla 2020-04-19 a las 15.01.09
Procesos de segmentación, blastulación y grastulación durante el desarrollo embrionario.

La alimentación de estos animales va a depender de si son parásitos o  son formas de vida libre. Las especies de vida libres se alimentan de diversos materiales, incluyendo algas, hongos, pequeños animales, materia fecal y restos de otros animales. Estas especies tienen un papel importante en procesos de descomposición. Entre las especies parásitas, las enfermedades más destacadas causadas a los humanos son: la anisakiasis, la triquinosis, la anquilostomiasis y la elefantiasis (Gil Recio, 2016).

Caenorhabditis elegans

El nematodo Caenorhabditis elegans es considerado un organismo modelo en investigación desde 1960. Este organismo tiene gran importancia en diversos campos como: neurobiología,  biología del desarrollo , genética, toxicología biomédica, neurociencia y en el estudio del cáncer entre otros. Esto se debe a que posee genes, vías y proteínas homologas a las del ser humano. Además en esta especie se descubrió la muerte celular programada (Parada et al, 2017).

C. elegans es un gusano diminuto del suelo, de poco más de un milímetro. Se alimenta de microorganismos y micronutrientes. Es un gusano pluricelular en forma de tubo alargado. Su cuerpo, al igual que el de los nematodos, esta recubierto por una cutícula exterior. No presenta ojos, pero tiene cierta capacidad de percibir intensidades luminosas. Además, dado que su cuerpo es transparente, se puede visualizar con microscopía diferentes procesos biológicos (Valls, 2011).

Las características que lo hacen importante como organismo modelo son las siguientes: un genoma bien caracterizado, facilidad de mantenimiento, pequeño tamaño, posibilidad de mantener en condiciones de laboratorio mediante una dieta de E. coli (muy económico), un ciclo de vida corto (3 días), gran numero de crías (más de 300), y la simplicidad a la hora de estudiarlo, ya que los adultos hermafroditas tan solo tienen 959 células sómaticas (Parada et al, 2017).

Para leer el capítulo anterior: capítulo 5

Para leer el siguiente capítulo:capítulo 7

REFERENCIAS

Gil Recio, C. (2016). “Nematodos, características y ejemplos”. Revista digital sobre animales y mascotas. naturaleza y Turismo. [online]. Disponible en: https://invertebrados.paradais-sphynx.com/nematodos/nematodos-caracteristicas.htm [Último acceso: 19 Abr. 2020].

Khan (2017). “Reino Animalia: Phyla Rotifera, Nematoda y Annelida”. Khan academy. Disponible en: https://es.khanacademy.org/science/biologia-pe-pre-u/x512768f0ece18a57:reino-animalia-y-sus-caracteristicas/x512768f0ece18a57:animalia-clasificacion/a/reino-animalia-phyla-rotifera-nematoda-y-annelida [Último acceso: 19 Abr. 2020].

Parada, L.; Gualteros, A.; Sanchez, R. (2017). Caracterización fenotípica de la cepa N2 de Caenorhabditis elegans como un modelo en enfermedades neurodegenerativas. NOVA 15 (28): 69-78.

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 19 Abr. 2020].