Curso “Chemicals and Health”

La recomendación de esta semana es un curso gratuito en la plataforma Coursera llamado “Chemicals and Health”. En él podrás aprender sobre los químicos presentes en el ambiente y cómo interaccionan con nuestro cuerpo. Podrás inscribirte a partir del 19 de Marzo. Este curso es impartido en inglés.

Aquí el enlace: https://www.coursera.org/learn/chemicals-health

¡No te lo pierdas!

El poder de la alimentación

El miércoles pasado tuve la suerte de asistir a una charla sobre alimentación y dolor impartida por Laura Isabel Arranz, Doctora en alimentación y nutrición, profesora en la Universitat de Barcelona y directora de Gana Nutrición. La charla estaba orientada a la gestión del dolor en pacientes con enfermedades crónicas como la fibromialgia, pero por la interesante información transmitida de forma divulgativa y aplicable a todo el mundo considero que merece un hueco en este blog.

Según la Organización Mundial de la Salud (OMS), la salud no es solo ausencia de enfermedad, sino un estado de completo el bienestar físico, psicológico y social. Son muchos los factores que intervienen en la salud, entre los cuales la alimentación juega un papel fundamental. Una buena nutrición nos hace menos susceptibles a determinadas infecciones o a enfermedades como la diabetes tipo II o enfermedades cardiovasculares (Berciano y Ordovás, 2014) y ayuda a combatir otras muchas. Como decía Hipócrates “que la comida sea tu alimento y el alimento tu medicina”.

La alimentación no sólo es una de las vías de exposición a algunos contaminantes como pesticidas o metales pesados, sino que también puede combatir los efectos asociados en muchos casos a dicha exposición, como el estrés oxidativo relacionado con numerosas enfermedades crónicas. Pero, ¿Qué es el estrés oxidativo? Es el desequilibrio entre la producción de especies reactivas del oxígeno (como los radicales libres) y la defensa antioxidante del organismo (Betteridge, 2000). Existe una gran multitud de enfermedades que se han asociado con el estrés oxidativo y la generación de radicales libres (Elejande Guerra, 2001). Una dieta rica en alimentos vegetales con vitaminas antioxidantes puede reforzar las defensas naturales del organismo para combatir el estrés oxidativo y mejorar el estado de salud.

Uno de los temas que se abordaron en la charla fue la importancia de la microbiota intestinal, que nos ayuda no sólo a asimilar mejor muchos nutrientes, sino a evitar las infecciones por cándida (o candidiasis) en el aparato digestivo e incluso a regular los niveles de serotonina (la conocida como “hormona de la felicidad”). Esta hormona posteriormente se transforma en melatonina, la hormona responsable de regular el ciclo del sueño, entre otras cosas. El consumo de yogures con fermentos lácticos y alimentos con fibra como verduras, frutas, cereales integrales, semillas, legumbres y frutos secos contribuyen al buen estado de la microbiota. Por otro lado, entre los alimentos que la ponen en riesgo se encuentran los embutidos, las carnes a la brasa, o los snacks. El estrés, el consumo de tabaco, algunos fármacos y la falta de sueño son otros factores que afectan negativamente a estos microorganismos tan importantes para nosotros.

Del mismo modo, la falta de actividad física, el estrés / ansiedad y el cansancio nos conducen a una mala conducta alimentaria. En ocasiones, el consumo de dulces se hace (consciente o inconscientemente) buscando energía rápida y sensación de bienestar momentánea, sin embargo, estos alimentos están muy ligados a procesos inflamatorios que pueden además empeorar el dolor en enfermedades crónicas.

                                              Dispositiva tomada de la presentación de la Dra. Arranz

La doctora Arranz hizo un repaso de algunas de las dietas que actualmente están muy de moda como la macrobiótica o la alcalina, señalando sus pros y sus riesgos y dando una serie de recomendaciones para evitar déficits nutricionales. Sostiene que lo ideal es la dieta mediterránea con abundancia de vegetales, cereales integrales, semillas, legumbres, frutos secos, pescado azul 2 o 3 veces por semana (preferiblemente de pequeño tamaño para reducir la exposición a contaminantes como el mercurio) y aceite de oliva virgen extra. Considera necesario reducir el consumo de carne roja a alguna vez al mes por su contenido en grasas saturadas y evitar hidratos de carbono refinados y azúcares, alimentos procesados, alcohol, tabaco y café en exceso (y mejor sustituirlo por el té verde que tiene una gran cantidad de antioxidantes). También recomienda sustituir la leche de vaca, menos digestiva y con un bajo valor nutricional, por bebidas vegetales como la de almendras o la de avena. Además, aconseja reducir el consumo de sal y usar especias, siendo especialmente interesante la cúrcuma por sus propiedades antiinflamatorias y antioxidantes.

Y tú, ¿Qué opinas? ¿Estás de acuerdo con estas recomendaciones? ¿Has experimentado cambios en tu salud a raíz de modificar tus hábitos alimenticios?

 


REFERENCIAS:

Berciano, S., Ordovás, J. M. Nutrición y salud cardiovascular. Rev Esp Cardiol. 2014, vol 67, n. 9 pp. 738-47. Disponible en: http://www.revespcardiol.org/es/nutricion-salud-cardiovascular/articulo-resumen/90341408/

Betteridge, D. J. What is oxidative stress? Metabolism. 2000, Feb;49(2 Suppl 1):3-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10693912

Elejalde Guerra, J. L. Estrés oxidativo, enfermedades y tratamientos antioxidantes. An. Med. Interna. 2001, vol.18, n.6 pp.50-59. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-71992001000600010&lng=es&nrm=iso.

Efecto contaminación de plomo en el buitre leonado

 Información preparada por la alumna LAURA GOMEZ GUIJARRO  de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica

 

EFECTO DE LA CONTAMINACIÓN POR PLOMO EN EL BUITRE LEONADO.

Las fuentes antropogénicas de plomo se han visto implicadas en la muerte de muchas especies de aves, sobre todo está documentado en aves acuáticas. Sin embargo, también supone un desafío especial para las aves de rapiña debido a que sus poblaciones son naturalmente bajas y la pérdida de unos pocos individuos puede afectar la viabilidad de la población. El envenenamiento por plomo ganó especial atención durante los años 70 y 80 para los cóndores de California, cuya fuente probable de plomo eran balas y fragmentos de bala en la carroña consumida (Carpenter et al., 2003).

El plomo es uno de los metales pesados más tóxicos para los seres vivos. Su ubicuidad y persistencia ambiental y su acumulación en organismos y biomagnificación a lo largo de la cadena trófica implican exposición continua. La exposición a elevados niveles de metales constituye una de las principales amenazas para las aves necrófagas (Alcántara, 2008). Esta exposición se produce, por ejemplo, en los sitios de eliminación de residuos (como en Aznalcóllar, España, en 1998) o a través de la ingestión de perdigones, pesos y carne de caza impactada con fragmentos de municiones de plomo (García-Fernández et al., 2005).

En el estudio de García-Fernández et al. (2005) se analizó el plomo en sangre de 23 buitres leonados (Gyps fulvus) para evaluar la exposición al plomo en la población de buitre del Parque Natural de Cazorla. Se observó que la población de buitres estaba sufriendo una exposición subclínica al plomo, con algunos individuos expuestos a un alto riesgo de toxicidad y se concluyó que la ingestión de plomo en forma metálica es suficiente para producir altas concentraciones de plomo en la sangre. Para las conclusiones compararon los valores de plomo en sangre que obtuvieron con el trabajo de Franson (1996) sobre el nivel mínimo de plomo en sangre necesario en Falconiformes para considerar efectos fisiológicos.

No solo encontramos una exposición al plomo por parte del buitre leonado en Cazorla. También en Extremadura se realizó un estudio donde se midió la concentración de plomo en el hígado, junto a otros metales pesados tóxicos como el cadmio y el mercurio. Se concluyó que el buitre leonado está expuesto a concentraciones elevadas de plomo, en comparación con los otros metales, con posibilidad de causar toxicidad clínica o subclínica (Sacristán, 2012).

La intoxicación aguda por este metal puede causar mortalidad y la exposición crónica al plomo puede afectar indirectamente a las poblaciones de aves al alterar el éxito reproductivo, el comportamiento, la respuesta inmune y la fisiología (García-Fernández et al., 2005). Además, en un estudio de Espín et al. (2014) se vio que elevados niveles de plomo en sangre pueden tener efectos sobre biomarcadores del estrés oxidativo. Además del plomo se ha observado que otra causa de mortalidad de los buitres leonados es el envenenamiento por el uso ilegal de pesticidas (Alcántara, 2008).

La solución más recomendada es la prohibición de la munición con plomo para la caza mayor a fin de preservar la población de buitres (García-Fernández et al., 2005).

Una limitación del trabajo es que existe un desconocimiento de las referencias sobre los niveles de plomo en sangre en buitres leonados, que generalmente se comparan con los datos de otras especies de aves silvestres. Por lo que una futura línea de investigación podría ir encaminada por ese camino. También sería importante realizar una biomonitorización continua de plomo en esta especie principalmente en aquellas poblaciones que se encuentren en declive (Sacristán, 2012).

BIBLIOGRAFÍA

Alacántara, M. (2008). Plan de acción para la erradicación del uso ilegal de venenos en el medio natural en Aragón. Actas del Seminario Mortalidad por intoxicación en aves necrófagas. Problemática y soluciones. Aínsa, Huesca.

Carpenter, J. W.; Pattee, O. H.; Fritts, S. H.; Rattner, B. A.; Wiemeyer, S. N.,;Royle, J. A.; & Smith, M. R. (2003). Experimental lead poisoning in turkey vultures (Cathartes aura). Journal of Wildlife Diseases, 39(1), 96-104.

Espín, S., Martínez-López, E., Jiménez, P., Maria-Mojica, P., García-Fernández, A. J. (2014). Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus). Environmental Research, 129: 59-68.

Franson, J. C. (1996). Interpretation of Tissue Lead Residues. Environmental contaminants in wildlife: interpreting tissue concentrations, 265.

García-Fernández, A. J.; Martínez-López, E.; Romero, D.; Maria-Mojica, P.; Godino, A.; Jimenez, P. (2005). High levels of blood lead in griffon vultures (Gyps fulvus) from Cazorla natural park (southern Spain). Environmental Toxicology, 20: 459–463.

Mateo, R.; Vallverdú-Coll, N.; Ortiz-Santaliestra, M. E.; (2013). Intoxicación por munición de plomo en aves silvestres en España y medidas para reducir el riesgo. Ecosistemas 22(2):61-67.

Sacristán, I. (2012). Concentraciones de metales pesados (Pb, Cd y Hg) en hígado de buitre leonado (Gyps fulvus) de Extremadura. Serie Congresos Alumnos, 4 (15): 75.

Salvador, A. (2015). Buitre leonado – “Gyps fulvus”. Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid.

 

Descontaminación de suelos mediante el uso de plantas transgénicas

La modificación genética, ya sea de animales o de plantas, sigue generando polémica y opiniones diversas con mayor o menor fundamento científico. Entre las diversas aplicaciones tanto en beneficio del ser humano como del medio ambiente, vamos a hablar de una aplicación poco conocida de los transgénicos que se basa en su capacidad para descontaminar el medio ambiente.

Una de las aplicaciones de la biotecnología vegetal más conocidas hoy en día es la modificación de plantas para el uso agrícola para que sean resistentes a insectos o puedan tolerar ciertos herbicidas. Un ejemplo de estos cultivos modificados mediante la ingeniería genética serían las plantas “Roundup Ready”, las cuales toleran al herbicida “Roundup” (glifosato). Otra utilidad de las plantas modificadas genéticamente es la biorremediación, que es un proceso en el que se utilizan seres vivos (o alguna de sus partes o productos) para la recuperación de una zona terrestre o acuática contaminada. Hay dos tipos de biorremediación:

  • in situ: mediante bioestimulación añadiendo nutrientes al medio contaminado, o mediante bioincremento, aportando al medio contaminado microorganismos para que lo degraden.
  • ex situ: se transporta el contaminante a plantas de procesamiento para su degradación por microorganismos especializados.

Una de las líneas de la biorremediación es la fitorremediación, que consiste en la utilización de las plantas y de los microorganismos asociados a las mismas con fines de descontaminación del medio ambiente (Bey, 2010). Las plantas son organismos autótrofos, sintetizan compuestos orgánicos usando como fuente de carbono el  y absorbiendo agua con compuestos minerales, nitrógeno y otros nutrientes del medio a través de las raíces. Debido a la contaminación del medio ambiente, las plantas absorben también compuestos tóxicos, por lo que han ido generando mecanismos de detoxificación que les permiten sobrevivir en ambientes adversos (Bey, 2010).

Esta técnica de biorremediación permite descontaminar de manera eficiente compuestos tóxicos orgánicos e inorgánicos. Los contaminantes orgánicos son producidos mayoritariamente por el hombre como consecuencia de derrames (combustibles), actividades industriales (desechos químicos y petroquímicos) o actividades militares y agrícolas (Bey, 2010). Algunos ejemplos de compuestos orgánicos que han sido degradados de manera eficiente mediante la biorremediación son herbicidas como la atrazina o hidrocarburos derivados del petróleo (gasolina, benceno, tolueno, etc), entre muchos otros. Estos son relativamente menos tóxicos que los contaminantes orgánicos ya que son reactivos y no se acumulan.

Los compuestos inorgánicos no pueden ser degradados por las plantas, pero pueden acumularse en las partes cosechables de las mismas (Bey, 2010). Un ejemplo de estos contaminantes es el Mercurio (Hg), una de las sustancias más tóxicas. La forma más volátil es el óxido de mercurio (HgO), que puede oxidarse con el ozono atmosférico en presencia de agua para dar la forma divalente reactiva Hg2+. Esta forma puede reaccionar con compuestos orgánicos para dar lugar a organomercuriales, los cuales son potentes tóxicos para el sistema nervioso, del riñón y del hígado en animales superiores (incluidos humanos). Es importante señalar que, al ser un contaminante bioacumulable, la concentración de mercurio en los organismos va aumentando a medida que se asciende en los diferentes niveles de la cadena trófica (biomagnificación).

La eliminación de este compuesto se consigue mediante operones mer (estructuras génicas que codifican genes que protegen a determinados microorganismos de la contaminación por mercurio). Algunos investigadores han transformado plantas con genes bacterianos del operon mer, para que las plantas acumulen el aproximadamente el doble de metales. Un ejemplo de plantas en las cuales se usan estos operones seria la planta de Arabidopsis thaliana y la planta del tabaco, las cuales son transformadas con el gen merC de Acidithiobacillus ferrooxidans (Sasaki et al,2006).

Arabidopsis thaliana Universidad de Iowa. Departamento de biología. E. Jefferson St.
https://biology.uiowa.edu/model-organisms/arabidopsis-thaliana-mustard-plant

Referencias

Bey, P.; Mentaberry, A.; Segretín, M. (2010). Biotecnología y Mejoramiento Vegetal II. Parte V. Ediciones INTA y Argenbio.

Mathews, C. K.; Van Holde, K. E.; Ahern, K. G. (2002). Bioquímica. 3º ed. Pearson Addison Wesley. Madrid.

Sasaki, Y.; Hayakawa, T.; Inoue, C.; Miyazaki, A.; Silver, S.; Kusano, T. (2006). “Generation of mercuryhyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC”. Transgenic Res. 15(5): 615-625.

El consumo de pescado por niños de 36 meses o sus madres está asociado a un correcto neurodesarrollo: estudio prospectivo de cohorte en Italia

El pescado, y especialmente los grandes, es una fuente preocupante de mercurio para la salud humana. Varios estudios han demostrado que el consumo de pescado supera en beneficios a los riesgos de la exposición a este metal pesado. En este último, el consumo de pescado por las madres gestantes no parece influir negativamente en el neurodesarrollo de sus hijos por la exposición al mercurio del pescado, que es relativamente bajo. Además, el consumo de pescado por estos niños les ayuda a un correcto neurodesarrollo.

Origen: Associations of Prenatal Mercury Exposure From Maternal Fish Consumption and Polyunsaturated Fatty Acids With Child Neurodevelopment: A Prospective Cohort Study in Italy

Cenotes: paraísos en peligro

Los cenotes constituyen una abertura al exterior de una compleja red fluvial subterránea en la que se puede mezclar agua dulce y salada, incluso cuando estos se sitúan a kilómetros de la costa. En cuanto a su formación, son el resultado del colapso de las cavernas y cuevas generadas por la disolución de la roca caliza (relieve kárstico). En México, la mayoría se concentran en la península del Yucatán, ya que esta zona cuenta con plataformas calizas que filtran con facilidad el agua procedente de la lluvia, la cual desciende hasta el manto freático formando acuíferos.  Existen también en Australia y en las Bahamas, pero son conocidos como blue holes (agujeros azules) (www.ramsar.org).

Cenote es un término que sólo se utiliza en México y proviene de la palabra maya “dzonot” que significa “abismo”. Para la cultura maya, los cenotes eran considerados fuentes de vida pues proporcionaban el líquido vital, el agua; constituían una entrada hacia otro mundo y eran centro de comunión con los dioses. Algunos cenotes poseen restos arqueológicos, por lo que los investigadores creen que han sido lugar de culto y rituales para civilizaciones como los mayas (www.gob.mx).

Estas masas de agua son especialmente vulnerables a la contaminación antropogénica, la cual puede ser de origen agrícola y ganadera (en su mayoría plaguicidas), industrial, hospitalaria y fecal. Se ha detectado la presencia de plaguicidas organoclorados (clordano, aldrín, dicloro difenil tricloroetano o DDTs, endosulfán y hexaclorociclohexanos o HCH), medicamentos, metales pesados…Muchos de estos compuestos actúan como disruptores endocrinos. También se ha encontrado cafeína, cocaína, naproxen e ibuprofeno (ambos medicamentos), nonilfenol…; además del DDT, HCH, endosulfan y el clordano que también pueden actuar alterando la función hormonal. Esto pone en riesgo la calidad del agua y, por ende, la salud de los organismos de vida silvestre y del ser humano debido a la exposición a estos compuestos, ya que los cenotes constituyen una importante fuente de agua dulce para las poblaciones cercanas. Unas buenas prácticas contribuirán al uso sostenible del agua y la preservación del ecosistema (Rendón, 2016).

La fauna y flora de los cenotes se ha desarrollado conforme a unas características concretas: ausencia/presencia de luz, profundidad de la haloclina (interfase entre el agua salada y dulce) o ausencia de ella, tipo de roca y suelo, subida/bajada del nivel de agua, etc; y se ven altamente perjudicadas por el turismo y la contaminación.

Las especies que habitan en la columna de agua (fitoplancton) varían estacionalmente debido a la escorrentía en las estaciones lluviosas que vierte nutrientes y produce que las aguas de los cenotes puedan observarse verdes, azules, cafés o transparentes, dependiendo de la época del año. Existe también vegetación flotante y sumergida, microalgas, dinoflagelados, invertebrados microscópicos, esponjas, bivalvos y gasterópodos, algunos peces marinos y peces ciegos (estos últimos en peligro de extinción). La fauna acuática es un buen indicador de las condiciones ambientales del cenote ya que por sus características de aislamiento, las especies, particularmente las habitantes de las cavernas, han desarrollado adaptaciones específicas para las condiciones en las que viven, pudiendo ser sensibles al deterioro del ecosistema (Medina-González, 2016).

Estos paraísos naturales son especialmente sensibles a los desechos generados por la actividad humana, por lo que debemos dotarlos de un marco legislativo así como concienciar a la población, con el objetivo de protegerlos y preservar su fauna y flora únicas.

Bibliografía:

Gobierno de México. Tzukán, la serpiente protectora de cenotes. Recuperado el 1 de abril de 2017 de https://www.gob.mx/conagua/articulos/tzukan-la-serpiente-protectora-de-cenotes?idiom=es

Medina-González, Roger M. (2016). Aspectos biológicos de los cenotes de Yucatán.

Departamento de Ecología de la Universidad Autónoma de Yucatán. Recuperado el 1 de abril de 2017 de http://www.seduma.yucatan.gob.mx/cenotes-grutas/documentos/BiologiaCenotes.pdf

Rendón, J. (2016). Contaminación de cenotes con plaguicidas en la Península de Yucatán. Instituto EPOMEX, Universidad Autónoma de Campeche. Recuperado el 1 de abril de 2017 de http://www.greenpeace.org/mexico/Global/mexico/Docs/2016/oceanos/Informe-cenotes-GP_final.pdf

Sitios RAMSAR en México. Recuperado el 1 de abril de 2017 de http://archive.ramsar.org/cda/en/ramsar-documents-list-anno-mexico/main/ramsar/1-31-218%5E16517_4000_0__

 

 

 

Mar de metales pesado con mejillones cada vez más pequeños

Esa enorme piscina de aguas azules que llamamos mar ha sido estudiada desde hace mucho tiempo, por lo que se cuenta con una gran cantidad de datos del pasado que nos sirven para comparar la situación actual con la que teníamos tiempo atrás, y se observa que el número de contaminantes y su concentración está aumentando, por eso debemos empezar a tomar medidas y entender la forma en la que nos afecta.

Desde los primeros estudios han aparecido sustancias que no deberían estar en los mares, sin embargo, en la actualidad estamos en un momento en el que se contaminan las aguas marinas de forma muy agresiva con químicos industriales, todas clase de objetos que se arrojan al mar, elementos químicos que no deberían de ser perceptibles en una masa de agua tan grande. Pero en los análisis de este caldo lleno de vida que se han realizado por todo el mundo, se han encontrado trazas de los mismos contaminantes, entre los que se encuentran los metales pesados, que son en los que nos centraremos en este breve artículo.

Las concentraciones de los metales más frecuentes ordenado de mayor a menor concentración son: cobre, cromo, plomo, níquel, cadmio y mercurio; sin embargo todos pueden ser controladas por cualquier humano sano.

En España se estudió la contaminación de las aguas litorales que bañan nuestras costas en 1979, gracias a un programa internacional contra la contaminación del litoral, patrocinada por la OMS (Organización Mundial de la salud) y tras la cual, se han realizado periódicas revisiones para controlar la calidad de nuestras aguas (Miguel Ibáñez, 1986).

Como ya hemos mencionado; analizaremos las consecuencias de los metales pesados en la biota marina, pues es la que sufre directamente la contaminación; especialmente nos centraremos en los seres marinos de vida sésil (inmóvil) como los mejillones, pues son una forma de vida muy extendida por el mundo por lo que se puede comprar como les afecta los metales pesados en distintas partes del globo, además, al no poder moverse son perfectos organismos de control para cualquier estudio, pues no se verán afectados por otras condiciones que no sean de la zona en la que se encuentran.

Los metales pesados son liberados al mar principalmente por las industrias al deshacerse de sus residuos, pero no se echan en lingotes de macizos plomo o cadmio, sino que van disueltos o en suspensión, siendo esta la forma idónea para que un ser filtrador como el mejillón, que se encuentra tranquilo alimentándose aferrado a su piedra o poste, ingiera sin quererlo ni beberlo partículas de estos elementos que se irán acumulando en él hasta que muera y ya no pueda acumular más. Con esto queremos poner de manifiesto, que los metales pesados se van acumulan en la cadena trófica marina (bioacumulación) y al final acabaran afectando a todo el medio, e incluso a nosotros; pero al ser el mejillón un eslabón bajo en la cadena trófica, no representa riesgo directo para los seres humanos, siempre que no comamos cantidades ingentes a diario durante mucho tiempo.

El mejillón verde nativo del Pacífico, llego a Cuba, concretamente a la Bahía de Cienfuegos, una zona reconocida internacionalmente por estar muy contaminada, por lo que estudiaron estos moluscos bivalvos en las nuevas condiciones para ver si se podía consumir; y tras múltiples estudios, se concluyó que los mejillones de esta zona son aptos para la ingesta humana, cumpliendo las normal internacionales que regulan las cantidades de metales pesados aceptables. También se estudió el Mytilus californianus en las costas de California, y se llegó a la conclusión de que estos mejillones son aptos para el consumo humano.

Otros estudios se han centrado en observar cómo les ha afectado la contaminación a los mejillones y aunque falta tiempo para tener datos contrastados, en las primeras observaciones se notó que las valvas de estos moluscos muestran un grosor menor respecto al que tienen de media.

Con todo esto no pretendemos asustar y que dejen de comer mejillones o cualquier otro ser marino, sino que vean que el mar también se ensucia de forma invisible; que los desastres en el mar afectan sin querer a todos, y que aquella fábrica, que no echa humo por las chimeneas, si está contaminando al verter sus aguas a un pequeño riachuelo, pues como se dice, todos los ríos conducen al mar.

Bibliografía de referencia:

Fumero, Y., Pis , M. A., Aranda, Y. (2016) Metales pesados en el mejillón verde (Perna viridis) de la Bahía de Cienfuegos. REDVET. no. 9, p. 1-12.

Gutierrez, E. A., Perez, J. C ,. Muñoz, A. (2014) Cadmio, cobre y zinc en el mejillón Mytilus californianus (Conrad 1837) de la costa oeste de Baja California. Rev. Int. Contam. Ambient [online]. no. 3, p. 285-295. Disponible en:<http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992014000300005&lng=es&nrm=iso&gt;. ISSN 0188-4999.

Ibañez, M.  (1986) La contaminación marina por metales pesados en la costa de Guipuzcoa. LURRALDE investigación y espacio. p. 105-111.