“CRISPR-Cas, la revolución en edición genética” por el Dr. Lluís Montoliu

Ayer, 28 de septiembre de 2018, con motivo de la celebración de la Noche Europea de los Investigadores, tuve el placer de poder asistir a una magnífica charla sobre la herramienta CRISPR-Cas impartida por el Dr. Lluís Montoliu en la Fundación Francisco Giner de los Ríos (Institución Libre de Enseñanza).

Montoliu nos ha explicado de una forma muy visual cómo funciona el CRISPR, el sistema inmunitario de las bacterias y arqueas. Se denomina CRISPR a un conjunto de repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas, es decir, secuencias repetitivas entre las cuales encontramos fragmentos de material genético vírico. Las proteínas Cas reconocen el material genético exógeno procedente de los virus gracias a un ARN guía complementario a los fragmentos situados entre las repeticiones. Estas proteínas cortan el material genético vírico, destruyéndolo e impidiendo así la infección.

Este sistema posee una base genética y es, por lo tanto, heredable. Es decir, una vez que la bacteria adquiera resistencia al virus tras estar en contacto con él, todas las generaciones venideras lo serán. Es un sistema en continua actualización pues los virus mutan con el tiempo y pueden penetrar este sistema de protección.

Francisco Mojica es el autor de este descubrimiento revolucionario, por el cual está nominado al Nobel en las categorías de Química y Medicina. Jennifer Doudna y Emmanuelle Charpentier desarrollaron una técnica basada en este sistema que permitía modificar el ADN, el CRISPR-Cas, popularmente conocido como las tijeras genéticas.

Montoliu nos ha hablado sobre las diferentes aplicaciones de esta técnica en campos tan dispares como la medicina y la agricultura. Además, ha hecho especial hincapié en la necesidad de un desarrollo completo de estas técnicas para garantizar su seguridad antes de ser aplicadas en humanos. En su laboratorio estudian las aplicaciones del CRISPR en enfermedades como el albinismo. En la página web de su laboratorio podéis encontrar gran cantidad de información sobre CRISPR y sobre los trabajos que realizan acerca del albinismo: https://bit.ly/2DMfTai

Además, mi compañero Raúl escribió un artículo sobre CRISPR, disponible en este enlace: https://bit.ly/2R3mP5A

Por último, dar las gracias al Dr. Lluís Montoliu por acercar la ciencia a todos los ciudadanos y despertar el gusanillo investigador en muchos de nosotros.

Los diferentes organismos modelo. Capitulo 1: Introducción

Organismos modelo.
Collage de algunos organismos modelos. Imagen A: virus bacteriófago Fago T4 / Gónzales, C.; Imagen B: Echerichia coli / Geralt. 2013; Imagen C: Observación en fresco (levaduras vivas) por microscopía óptica por contraste Nomarsky de una cepa de Saccharomyces cerevisiae / Dr. A.V. Carrascosa. Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM). Imagen D: Arabidopsis thaliana / Universidad de Iowa. Departamento de biología. E. Jefferson St.; Imagen E: imagen de microscopía electrónica del nematodo Caenorhabditis elegans /Juergen Berger, Max Planck Institute for Developmental Biology, Tübingen, Alemania Imagen F: Drosophila melanogaster / AlexWild. Stock de laboratorio en la Universidad de California, San Diego.; Imagen G: Danio rerio / ESD. 2002.; Imagen H: Mus musculus / Greenaway, F.; Collage por Gómez, M. 2018.

La Teoría del Ancestro Común está basada en una teoría del naturalista Charles Darwin. Esta teoría explica cómo cambian las especies a partir de un antepasado común, adaptándose a las condiciones del medio ambiente (Alzabe, 2015). Durante la evolución, las propiedades fundamentales que componen a un ser vivo se han mantenido inalteradas. No obstante, la evolución ha dado lugar a una amplia diversidad de seres vivos. Dado que hay una gran diversidad pero que existen similitudes entre las diferentes especies, se han utilizado organismos modelos para estudiar diferentes aspectos de la biología celular y molecular.

Árbol filogenético de la vida
Árbol filogenético de la vida / Roll, R. 2007

La clasificación de los seres vivos se divide en tres reinos: Archea, Bacteria y Eukarya. Los dos primeros son organismos procariotas, mientras que Eukarya corresponde a los organismos eucariotas. El árbol filogenético demuestra que todos los seres vivos tenemos un grupo de ancestros en común. En las etapas más tempranas del desarrollo de la vida en nuestro planeta, tuvo lugar un mayor intercambio de material genético entre los primeros organismos que surgieron, constituyendo las bases de las futuras especies (Neyoy, 2014).

Gracias a los organismos modelo, la comunidad científica ha podido recopilar gran cantidad de información, ya que proporcionan datos valiosos para el análisis del desarrollo humano, regulación génica, enfermedades y procesos evolutivos. Sin embargo, las investigaciones centradas en estos organismos plantean cuestiones científicas y filosóficas. Estos seres vivos seleccionados representan una ínfima fracción de la biodiversidad que encontramos en el planeta. Por tanto, se debe asumir que la información recopilada de estos organismos se puede extrapolar al resto de organismos considerando un origen común (Valls, 2011).

A la hora de seleccionar los organismos modelo con los que se realizaran los diferentes experimentos de un estudio científico, se deben tener en cuenta varias características que aportan ventajas a los investigadores. Las tres principales características que un organismo debe presentar para ser útil en un laboratorio son su abundancia, su facilidad para criar o cultivar y su facilidad de manipulación en el laboratorio; así como otras características distintivas como embriones de gran tamaño, un linaje celular fijo, transparencia, etc (Valls, 2011).

Como ya he dicho, debido a la diversidad de complejidad entre los seres vivos de los diferentes reinos hubo la necesidad de establecer un abanico de organismos modelo para hacer posible el estudio de una amplia gama de características biológicas (Da Silva, 2017). Entre ellos destacan:

  • En los virus se utilizan virus bacteriófagos como el Fago T4.
  • En los procariotas destaca la bacteria Escherichia coli.
  • En los eucariotas encontramos varios organismos modelos como:
  • Levaduras: Saccharomyces cerevisiae.
  • Plantas: Arabidopsis thaliana.
  • Nematodos: Caenorhabditis elegans.
  • Insectos: Drosophila melanogaster.
  • Peces: Danio rerio.
  • Mamíferos:Mus musculus.

En esta serie de artículos os iré hablando concretamente de estos organismos modelo. Si conocéis algún otro que no esté en esta lista, y queréis que os dé información sobre él, escribidlo en los comentarios.

REFERENCIAS

Alzabe, R. (2015). “La idea de un ancestro común”. BIODIVERSIDAD. Disponible en:http://biodiversidadorigen.blogspot.com.es/2015/08/la-idea-del-ancestro-comun.html [Último acceso: 15 Ene. 2018]

Da Silva, I. (2017). “Organismos Modelo”. Knoow.net. Disponible en: http://knoow.net/ciencterravida/biologia/organismos-modelo/ [Último acceso: 15 Ene. 2018]

Neyoy, C. (2014). “Organismos modelos en biología”. Apuntes de biología molecular. Disponible en: http://apuntesbiologiamol.blogspot.com.es/2014/03/organismos-modelo-en-biologia.html [Último acceso: 15 Ene. 2018]

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. Disponible en: http://seresmodelicos.csic.es/ [último acceso: 15 Ene. 2018]