Posidonia oceanica, the jewel of the Mediterranean / Posidonia oceanica, la joya del Mediterráneo

Posidonia oceanica
Posidonia oceanica meadow in Formentera / Pradera de Posidonia oceania de Formentera / CSIC

English Version:

Summer it’s nearly to finish, and surely more than one has gone on holiday to the beach. We all have felt the hot sand between the toes, and trying not to burn we accelerate the passage, until we reach the ideal place to leave the towel and the chair. We look at the sea on the horizon and notice the breeze hitting our face, with that salty flavour. We approach the shore and stop to watch as the small waves reach our feet. What a feeling of peace. The holiday in our beloved Mediterranean Sea are incredible. Many people only know this about the sea. People don’t enter and don’t matter what there is and what is happening in this sea that we all love.

The Mediterranean Sea also suffering the global warming. In fact, it is warming faster than the global ocean. This has great repercussions for organisms and biogeochemical cycles. According to some studies, The Mediterranean Sea is warming at 0.61ºC per decade (Garcias-Bonet et al, 2019). In the Mediterranean Sea, seagrass ecosystems are very common, these ecosystems are very productive, it provides for many species shelter and food, thanks to relatively high rate of primary production (Stramska and Aniskiewicz, 2019). The seagrasses recognized as ecosystem engineers because it makes essential edaphic modifications, such as control of sediment deposition and stabilization of soft bottoms (Toniolo et al, 2018). Also, these meadows reduce the action of the waves, protect the coast, increase water clarity and mitigate the climate change by acting carbon sinks (Garcias-Bonet et al, 2019). It has been estimated that seagrass meadows accumulate up to 18% of total oceanic carbon, despite cover only about 0.2% of the global ocean floor. Unfortunately, it is also among the most endangered ecosystems on Earth. The main causes for this include climate change and negative impacts from human activities (Stramska and Aniskiewicz, 2019).

The most relevant seagrass species in The Mediterranean Sea are Posidonia oceanica, an endemic long-living species, and Cymodocea nodosa, a species found in the eastern Mediterranean Sea and on the northeastern Atlantic coast (Garcias-Bonet et al, 2019). This species develops in shallow waters, from 0 and 40m depth (Toniolo et al, 2018). P. oceanica forms monospecific meadows generally or mixed meadows and it is found in different substrates and habitats, from rocks to sandy bottoms (Bethoux y Copin-Motegut, 1986). P. oceanica is a large, long-living but very slow-growing seagrass and is estimated that cover a surface area between 2.5 and 5 million ha. The basic requirements for P. oceanica survival are similar to requirements of all plants. The main factor that influence growth are water temperature, light for photosynthesis, availability of nutrients and inorganic carbon. Also influence the exposure to mechanical disturbances like waves and currents that can destroy the meadows (Stramska and Aniskiewicz, 2019).

As for the water temperature, it is thought that optimal temperatures for P. oceanica growth are around 15.5 to 18 ◦C. In addition, temperatures above 27ºC have been shown to increase the mortality of the species. Therefore, water temperature can define the geographical limits of growth of oceanic P. oceanica. In aquatic ecosystems, light is a limiting factor. With depth the light is attenuated exponentially, for this reason, the presence of the species is limited to shallow water. However, it has developed growth strategies to acclimatize to the shortage of light, such as a reduced shoot density in deep waters. This species needs lower nutrient requirements than macro algae and phytoplankton. Today there isn´t knowledge about the importance of inorganic carbon limitation for the species. Also require oxygen. Leaves are usually situated in the oxygenated water column, but roots and rhizomes are buried in anoxic sediments. If the water column becomes hypoxic or anoxic, the below ground tissue may experience lack of oxygen, increasing the mortality (Stramska and Aniskiewicz, 2019).

Other thing we don´t know, the Mediterranean Sea consists of species with great importance for the functioning of our planet. Posidonia oceanica is a species with a decreasing population trend and some studies estimate that it will be extinguished between 2049 and 2100 as a result of the increase in mortality caused by global warming. (Garcias-Bonet et al, 2019). We have to be aware of the importance of biodiversity in the seas and oceans and protect it while enjoying it on our vacations.

Versión en español:

El verano esta llegando a su fin, y seguro que más de uno se ha ido de vacaciones a la playa. Todos hemos sentido la sensación de la arena caliente entre los dedos del pie, intentando no abrasarnos aceleramos el paso, hasta llegar al lugar idóneo para dejar la toalla y la silla. Miramos el mar en el horizonte y notamos la brisa golpeando nuestra cara, con ese aroma salado. Nos acercamos a la orilla y nos paramos a observar como las pequeñas olas llegan hasta nuestros pies. Que sensación de paz. Que increíbles son unas vacaciones en nuestro querido Mar Mediterráneo. Mucha gente solo conoce esto del mar. La gente no se adentra y no se preocupa por saber qué hay y qué esta ocurriendo en este mar que a todos nos encanta.

El Mar Mediterráneo también esta sufriendo el calentamiento global. De echo, se esta calentando mas rápido que el océano global. Esto tiene grandes repercusiones para los organismos y los ciclos biogeoquímicos. Según algunos estudios el Mar Mediterráneo se calienta 0,61ºC por década (Garcias-Bonet et al, 2019). En el Mar Mediterráneo, los ecosistemas de pastos marinos son muy comunes, estos ecosistemas son muy productivos y proporcionan refugio y alimento para muchas especies, gracias a una tasa relativamente alta de producción primaria (Stramska y Aniskiewicz, 2019). Incluso se reconoce que los pastos marinos son ingenieros de ecosistemas porque realizan modificaciones edáficas esenciales, como el control de la deposición de sedimentos y mantener estables los suelos blandos (Toniolo et al, 2018). También reducen la acción de las olas, protegen la costa, aumentan la claridad del agua y mitigan el cambio climático actuando como sumideros de carbono (Garcias-Bonet et al, 2019).Se ha estimado que retienen hasta el 18% del carbono total oceánico a pesar de ocupar tan solo el 0,2% del suelo oceánico global. Sin embargo, también están entre los ecosistemas mas amenazados del planeta. Las principales causas son el cambio climático y los impactos negativos de las actividades humanas (Stramska y Aniskiewicz, 2019).

Las especies de hierbas marinas mas importantes en este mar son Posidonia oceanica, una especie endémica de larga vida y Cymodocea nodosa, una especie que se encuentra en el Mediterráneo oriental y en la costa atlántica del noreste. Los prados de Posidonia oceanica se han convertido en Bioindicadores oficiales mundialmente (Garcias-Bonet et al, 2019).Esta especie se desarrolla en aguas poco profundas, entre 0 y 40 m de profundidad (Toniolo et al, 2018). Forma praderas monoespecíficas generalmente, aunque también forma praderas mixtas, y se encuentra en sustratos y hábitats diferentes, desde rocas hasta fondos arenosos (Bethoux y Copin-Motegut, 1986). Es una hierba marina grande, de vida larga pero de crecimiento lento, se estima que cubren un área de superficie entre 2,5 y 5 millones de ha. Los requerimientos básicos para la supervivencia de P. oceanica son análogos a los requerimientos de las plantas. Los factores principales que influyen en el crecimiento son la temperatura del agua, la luz para la fotosíntesis, la disponibilidad de nutrientes y el carbono inorgánico. También influye la exposición a modificaciones mecánicas como las olas y las corrientes que pueden destrozar los prados. (Stramska y Aniskiewicz, 2019).

En cuanto a la temperatura del agua, se piensa que la temperatura optima para el crecimiento de P. oceánica ronda entre los 15,5 y 18ºC. Además, se ha demostrados que temperaturas superiores a 27ºC aumentan la mortalidad de la especie. Por tanto, la temperatura del agua puede definir los limites geográficos de crecimiento de P. oceanica. En los ecosistemas acuáticos, la luz es un factor limitante. Con la profundidad la luz se atenúa exponencialmente, por esta razón, su presencia se limita a aguas poco profundas. No obstante, ha desarrollado estrategias de crecimiento para aclimatarse a la escasez de luz, como por ejemplo una densidad reducida de brotes en aguas profundas. Esta especie necesita menos disponibilidad de nutrientes que las macroalgas y el fitoplancton. Actualmente no hay muchos conocimientos acerca de la importancia que tiene la limitación de carbono inorgánica para la especie. También requieren oxígeno. Las hojas generalmente están situadas en la columna de agua oxigenada, pero las raíces y los rizomas están enterrados en sedimentos anóxicos. Si la columna de agua se vuelve hipóxica o anóxica, el tejido subterráneo puede experimentar falta de oxígeno, aumentando la mortalidad (Stramska y Aniskiewicz, 2019).

Aunque no lo sepamos, el Mar Mediterráneo consta de especies de gran importancia para el funcionamiento de nuestro planeta. Posidonia oceanica es una especie con una tendencia poblacional decreciente y algunos estudios estiman que se extinguirá entre 2049 y 2100 como consecuencia del aumento de mortalidad provocado por el calentamiento global (Garcias-Bonet et al, 2019). Tenemos que ser conscientes de la importancia de la biodiversidad existente en los mares y océanos, y protegerla a la vez que disfrutamos de ella en nuestras vacaciones.

Bibliography

Bethoux, J., Copin-Motegut, G. (1986). Biological fixation of atmospheric nitrogen in the Mediterranean Sea. Limnology and Oceanography 31(6): 1353-1358.

Garcias-Bonet, N., Vaquer-Sunyer, R., Duarte, C., Núria Marbà, N. (2019). Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences 16(1): 167–175.

Stramska, M., Aniskiewicz , P. (2019). Recent Large Scale Environmental Changes in the Mediterranean Sea and Their Potential Impacts on Posidonia Oceanica. Remote Sens 11(1): 110.

Toniolo, C., Di Sotto, A., Di Giacomo, S., Ventura, D., Casoli, E., Belluscio, A., Nicoletti, M., Ardizzone, G. (2018). Seagrass Posidonia oceanica (L.) Delile as a marine biomarker: a metabolomic and toxicological analysis. Ecosphere 9(3).

Los delfines del índico-pacífico pueden usar esponjas como herramientas de protección

En este increíble hilo de Twitter, Alex nos cuenta cómo estos delfines son capaces de utilizar esponjas para proteger sus hocicos de las rozaduras y cortes de las rocas y así poder cazar peces en el fondo marino. Además, esta conducta se transmite culturalmente de madres a hijas.

Si quieres saber más, lee el hilo completo aquí:

Disminución drástica en la población de insectos alados

Abeja
Fotografía de una abeja / Velasco, 2007. Fuente: Flickr.

Un nuevo estudio liderado por Caspar Hallamann alerta sobre la disminución de la población de insectos alados en reservas y parque naturales de Alemania.

Supongo que habréis oído hablar de la desaparición de las abejas. Seguramente no os parezca tan mala noticia, menos probabilidad de sufrir una de sus picaduras. No obstante, no solo está disminuyendo la población de las abejas, sino que toda la población de insectos alados se está viendo reducida drásticamente.  Se estima que las poblaciones de mariposas de pastizal europeas han disminuido en un 50% en abundancia. En otros datos referentes a taxones mejor estudiados como es el caso de las abejas y las polillas, se puede observar la misma tendencia decreciente (Hallamann et al. 2017).

Este acontecimiento ha despertado un gran interés en la comunidad científica, en los políticos y el público en general. Y con razón, ya que se espera que la perdida de diversidad y abundancia de los insectos alados tenga efectos secundarios en las redes tróficas, poniendo en peligro el funcionamiento de los ecosistemas (Hallamann et al. 2017).

Los insectos tienen gran importancia en un ecosistema. Estos organismos forman un grupo abundante y diverso, donde el número de especies se estima en el orden de millones a nivel mundial (Guzman, 2010). Estos establecen relaciones bióticas con animales y plantas. Un claro ejemplo de estas relaciones es el mutualismo entre plantas con flor (angiospermas) e insectos. Este mutualismo ha generado un proceso de coevolución dando como resultado el aumento de la diversidad biológica en ambos grupos de seres vivos (Guzman, 2010). Si os interesa este tema del mutualismo os dejo un artículo publicado por mi compañera Sara Atienza sobre Coevolución en las referencias.

Hay varias opiniones respecto a la desaparición de estos organismos. Algunas causas propuestas son el cambio climático, la perdida y fragmentación del hábitat, y el deterioro de la calidad del mismo (Hallamann et al. 2017).  Sin embargo, un estudio publicado en PLOS ONE pone en duda estas hipótesis. El nuevo estudio, dirigido por Caspar Hallamann de la Universidad de Radboud ha descubierto que, en reservas y parques naturales alemanes, la población de insectos alados ha disminuido en más del 75% desde 1990 (Villarreal, 2017). Estudios anteriores, también señalan este declive, pero se centraban en especies concretas, como las abejas. Lo característico del nuevo estudio es que se ha centrado en un espectro más amplio, observando el declive en los insectos alados (Villarreal, 2017). Para medir la biomasa total de insectos, los investigadores han utilizado trampas Malaise desplegadas en 63 áreas protegidas de Alemania, durante la primavera, verano y principios de otoño (Hallamann et al. 2017). Esta medición de la biomasa (peso de la captura de insectos en cada trampa) les ha permitido conocer la caída en el número de insectos.

Como ya se ha mencionado, la causa de esta disminución de biomasa aún no se conoce, lo que es bastante desconcertante. Modelos previos a este estudio estimaban una pérdida del 58% pero ninguno prevenía un declive del 82% de insectos que el equipo de Hallamann ha encontrado durante su estudio en estas últimas décadas. Los investigadores advierten de una necesidad urgente por descubrir las causas de esta catástrofe, dado que los datos observados se han tomado en zonas destinadas a proteger la biodiversidad (Villarreal, 2017).

REFERENCIAS

Atienza, S. (2017). “¿Coevolu…qué?”. Ecotoxsan. Disponible en: https://ecotoxsan.blog/2017/05/31/coevolu-que/ [Último acceso: 23 Ene. 2018]

Guzmán, R. (2017). “Los insectos: antiguos contructores del mundo”. Elementos, 17 (79) http://www.elementos.buap.mx/num79/htm/29.htm

Hallmann CA.; Sorg, M.; Jongejans, E.; Siepel, H.;  Hofland, N.; Schwan, H.; et al. (2017). “More than 75 percent decline over 27 years in total flying insect biomass in protected areas.” PLOS ONE, 12 (10): e0185809. https://doi.org/10.1371/journal.pone.0185809

Villarreal, A. (2017). “¿Dónde han ido todos los insectos? Ya no están ni en los espacios protegido”. Madrimasd. Disponible en: http://www.madrimasd.org/notiweb/noticias/donde-han-ido-todos-los-insectos-ya-no-estan-ni-en-los-espacios-protegidos [Último acceso: 19 Ene. 2018]

Arde Galicia

Estas atrocidades contra el medio natural se repiten cada año sin que el Gobierno tome medidas suficientes para la protección de nuestros bosques. Teñir de negro nuestro patrimonio natural es atentar contra todo un país que hoy llora desconsoladamente por unas vidas que ya no volverán. Los hogares, negocios y, lo más importante, la vida de la población y la de todos los voluntarios y bomberos que luchan contra el fuego, está en juego estos días.

No dejemos que el fuego nos consuma. Firma esta petición para cambiar la ley de Montes (que permite la recalificación de terrenos quemados), aboga por la repoblación con especies autóctonas y el refuerzo a la prevención de incendios. Ya somos más de 15.000 personas: http://bit.ly/2icSeWq

Cómo la simbiosis entre hongos y plantas puede mejorar la productividad agrícola en las condiciones del calentamiento planetario (y de paso dar de comer a los emprendedores)

How can you protect crops against global warming? One answer: find the secrets of plants that already thrive in the most punishing climates, says microbiologist Rusty Rodriguez.

a través de The surprising plant-fungi relationship that could help feed us, even as the world heats up — ideas.ted.com

La contaminación térmica del agua y los riesgos para la biodiversidad

 Información preparada por el alumno Carlos Cano Barbacil de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica

La contaminación térmica es un tipo de contaminación física que produce un deterioro de la calidad del agua y del aire principalmente como consecuencia de una variación de la temperatura.

La principal causa de la contaminación térmica son los sistemas de refrigeración de las centrales termoeléctricas y nucleares, que emplean agua en grandes cantidades para enfriar su fluido de proceso, y la devuelven con un incremento de temperatura entre 5 y 15ºC (Mihursky, 1970). En Estados Unidos, por ejemplo, el 48% del agua empleada en el año 2000, se destinó a refrigerar plantas termoeléctricas (Turpin, 2004). En menor medida, las aguas residuales urbanas, que suelen estar a una temperatura mayor que la del ambiente, e incluso la eliminación de la vegetación de ribera, que provoca la desaparición de la sombra, pueden generar un aumento de la temperatura del agua.

Esta contaminación acarrea graves problemas sobre todo para la biodiversidad acuática, provocando cambios en la composición y calidad de las aguas. En el caso concreto de la energía nuclear, las emisiones térmicas pueden generar hasta el 90% de los todos daños que sufre un ecosistema acuático de agua dulce (Verones, 2010).

Estos efectos, aunque en muchos casos, difíciles de establecer y predecir, llevan estudiándose desde hace largo tiempo. Ya en los años 60 se sabía que los cambios de temperatura en las aguas, generados por vertidos térmicos, provocaban un aumento en la incidencia de determinadas enfermedades sobre los peces. Un incremento en la temperatura de las aguas estimula la actividad y proliferación bacteriana y parasitaria, mientras que aumenta la susceptibilidad de los peces a sufrir cualquier enfermedad o infección. Este es el caso del parásito Kudoa clupeidae, que infecta al arenque con mayor frecuencia cuando este está sometido a un estrés térmico (Mihursky, 1970).

Los peces y otros organismos acuáticos pueden verse afectados por la falta de oxígeno en el agua, ya que al aumentar la temperatura disminuye la solubilidad de los gases en el agua, alterando su tasa de respiración. Los vertidos térmicos pueden provocar además cambios en la tasa de crecimiento, alimentación, reproducción y desarrollo embrionario, afectando así al ecosistema en su conjunto y a su distribución espacial. Esto provoca, tal y como se ha demostrado en la Bahía Grande de Ilha (Brasil), diferencias significativas entre las comunidades de dos zonas control y otra afectada por vertidos térmicos, donde la riqueza y diversidad de especies de peces es mucho menor (Teixeira, 2009).

Otros efectos conocidos son el blanqueo de la Tridacna gigas o almeja gigante, que convive en simbiosis con las algas unicelulares zooxantelas. Un incremento en la intensidad de la luz y de la temperatura del agua provoca una disminución del número de zooxantelas por unidad de superficie y de su contenido en clorofila (Dubinsky, 1996).

Un efecto similar al anteriormente citado ocurre con la ruptura en la relación simbiótica entre el microalga dinoflagelada Symbiodinium spp. y los corales, pues algunas especies de Symbiodinium son sensibles al aumento de temperatura, generando mayores cantidades de peróxido de hidrógeno (H2O2) y provocando el blanqueamiento del coral (Suggett, 2008).

Se ha probado que tanto la riqueza como la diversidad de especies de foraminíferos está correlacionada negativamente con la contaminación térmica de las aguas (Arieli, 2011).

Un aumento en la temperatura de las aguas puede al mismo tiempo favorecer a poblaciones de determinadas especies, provocando la invasión y colonización de ecosistemas en los que no se encontraban originalmente (Slynko, 2002).

Las soluciones a este problema son complejas, pues pasan principalmente por reducir el uso de la energía nuclear y de las plantas termoeléctricas, apostando por energías renovables como la eólica, o la solar para generar electricidad. Otra forma de reducir el problema, aunque sin eliminarlo plenamente, es implementar condensadores con mayores eficiencias que permitan reducir el caudal de agua de refrigeración empleada. En la actualidad, la mayoría de centrales cuentan con una torre de evaporación con la que se consigue reducir en parte la temperatura del agua mediante la cesión de calor latente de vaporización; sin embargo esto acarrea otra serie de problemas asociados como la concentración de sales y la modificación de las propiedades físico-químicas del agua.

Como se ha comprobado, la contaminación térmica puede provocar severos daños sobre las diferentes poblaciones y comunidades de los ecosistemas tanto marinos como dulceacuícloas.

BIBLIOGRAFÍA

Arieli, R. N. et al. (2011). The effect of thermal pollution on benthic foraminiferal assemblages in the Mediterranean shorface adjacent to Hadera power plant (Israel). Marine Pollution Bulletin 62: 1000-1002.

Dubinsky, Z. et al. (1996). Marine pollution and coral reefs. Global Change Biology 2:511-526.

Mihursky, J. A. et al. (1970). Thermal pollution, aquaculture and pathobiology in aquatic systems. Journal of Wildlife Diseases 6: 347-355.

Slynko, Y. V. et al. (2002). The Caspian-Volga-Baltic invasion corridor. Invasive Aquatic Species of Europe: 399-411.

Suggett, D. J. et al. (2008). Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. Journal of phycology 44: 948-956.

Teixeira, T. P. et al. (2009). Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay, Brazil. Marine Environmental Research 68: 188-195.

Turpin, J.R. (2004). A solution for thermal pollution. Engineered Systems: 44-50.

Verones, F et al. (2010). Characterization factors for thermal pollution in freshwater aquatic environments. Environmental Science & Technology 44: 9364-9369.

Presentación del nuevo Blog

Comienzo el nuevo año 2016 con una visión totalmente nueva: una nueva responsabilidad, nuevos compañeros, nuevo sistema de trabajo, nuevos jefes… Los que seguíais el Blog de ToxAmb sabréis que a día 1 de diciembre me incorporé en la Jefatura del Área de Toxicología Ambiental del Centro Nacional de Sanidad Ambiental (CNSA) del Instituto de Salud Carlos III. Este nuevo ilusionante proyecto me va a tener bastante absorbida hasta que mi “aclimatación” al nuevo entorno sea completa. Sin embargo, me gustaría iniciar simultáneamente un nuevo proyecto personal de difusión del conocimiento y concienciación social sobre la problemática ambiental a todos sus niveles: contaminantes, impactos sobre la biodiversidad y los ecosistemas y la salud humana como víctima última de esta lacra ¿De qué sirve que nuestros conciudadanos sufraguen con sus impuestos nuestros sueldos e investigaciones si no les hacemos llegar el conocimiento que obtenemos?

El perfil de este nuevo Blog será muy similar al del antiguo Blog de ToxAmb. El eje central será la difusión de noticias de interés de diversos medios pero también se publicitaremos la investigación científica propia o de colaboradores y de docencia impartida, especialmente en Máster Oficial y otros títulos de posgrado. Informaremos sobre los contaminantes prioritarios ya regulados (metales pesados, plaguicidas, carcinógenos, etc) y transmitiremos la información fiable que vaya apareciendo sobre los contaminantes preferentes y los emergentes (fármacos, nanomateriales, microplásticos, etc). Informaremos tanto sobre su presencia en el medio ambiente, como sobre los efectos directos sobre la salud humana y los indirectos generados a través de alteraciones de los ecosistemas y la biodiversidad. En este sentido, los polutágenos y zoonosis, y la susceptibilidad a patógenos generada por la polución son temas punteros que cada vez más refuerzan la relación existente entre enfermedades humanas, epidemias y equilibrio ecológico. Un tema apasionante, como también lo es el efecto de la contaminación sobre nuestro microbioma simbiótico y las patologías que se pueden derivar de ello. Y no sólo nos ceñiremos a los contaminantes químicos o biológicos sino que también intentaremos informar sobre los efectos de otros tipos de contaminación que nos rodea como la lumínica, acústica, electromagnética, etc.

Pondré especial empeño en la participación de colaboradores profesionales especializados que escriban pequeños artículos sobre temas de actualidad. Y  seguiré dando la oportunidad de publicar en este Blog a mis estudiantes que quieran dar divulgación a sus valiosos trabajos de clase, que reflejan perfectamente las preocupaciones de los jóvenes por el medio ambiente, la conservación de los recursos naturales y los efectos que su degradación puedan tener en su futuro. También será un objetivo prioritario resolver las dudas que nos planteéis los lectores con aclaraciones y detalles que deseéis conocer. El desenmascaramiento de creencias y posiciones pseudocientífcas ocupará un lugar prioritario para evitar falsas alarmas o intereses poco claros.

Es muy importante que todos los estamentos políticos, sociales y profesionales sean conscientes de que nuestra salud y nuestra economía dependen de los recursos que nos proporcionan los Ecosistemas en los que nos hemos desarrollado como especie y como sociedad. La destrucción de los Ecosistemas actuales no conducirá, como se cree generalmente, a la desaparición de la Vida en la Tierra. Por muchas bombas atómicas que estallen, mucho calentamiento climático o muchos meteoritos que se estrellen contra ella, la Vida seguirá. Lo que no entendemos es que los que nos extinguiremos somos nosotros, la especie humana, que necesita su propio nicho ecológico. Espero que este Blog consiga el mismo éxito que el anterior y aportar un granito de arena para mejorar el medio ambiente que nos da la salud y la vida.