Así muere el bosque más grande del planeta | madrimasd / Los biomas-La Taiga

Algunos científicos argumentaban que una de las consecuencias “positivas” del calentamiento global era que los bosques colonizarían las partes más frías del planeta. Sin embargo, un estudio muestra ahora cómo la contaminación está opacando la atmósfera de las regiones árticas, impidiendo el paso de los rayos del Sol y frenando la fotosíntesis. Esto ha dado como resultado que miles de kilómetros cuadrados de bosque boreal ya hayan muerto. Además el cielo oscurecido impide que crezcan los refuerzos.

Podeis leer la noticia en: Así muere el bosque más grande del planeta | madrimasd

¿QUE SON LOS BIOMAS?

Los biomas o ecorregiones son tipos de vegetación que aparecen en climas particulares y que tienen asociada una fauna característica adaptada a esas condiciones ambientales (Lomolino et al., 2006). Se agrupan por su similitud climática/geológica, ecológica, paisajista y por poseer organismos con adaptaciones similares. Las especies de un mismo bioma en sitios muy alejados (continentes) no tienen por qué ser las mismas, ni siquiera emparentadas. Los biomas no coinciden con las Regiones.

Hay 12 tipos de biomas según Lomolino et al. (2006): (1)El desierto polar, (2) La tundra + tundra alpina, (3) La taiga, (4) El bosque templado o caduco, (5) Pluviselva templada, (6) Las estepas y praderas, (7) El bosque mediterráneo (esclerófilo), (8) El bosque subtropical perennifolio, (9) El desierto, (10) La sabana,(11) El bosque tropical estacional (bosque seco) y (12) La pluviselva tropical  o bosque tropical.

Distribución de los 12 tipos de bioma.

Es importante destacar que los biomas son las mayores unidades en las que puede clasificarse la vegetación global (y su fauna asociada). Además, distintas regiones del planeta con climas similares contienen los mismos biomas, pero no necesariamente los mismos taxones.

Dentro de cada bioma, podemos distinguir multitud de ecosistemas, que dependen de factores locales (altitud, exposición solar, suelos, cursos de agua,…)

LA TAIGA

Los bosques boreales, también conocidos como “La Taiga”, solo se encuentran en el Hemisferio Norte. En Norteamérica alcanza unos 1500 km de latitud y en Eurasia 2000 km (en Rusia). La palabra taiga significa “bosque pantanoso” en ruso.  Ocupa el 32% de la superficie forestal mundial y el 8% de la superficie terrestre, por lo que es el bioma más extenso (Sánchez, 2019).

Distribución de los bosques boreales.

Contribuyen de manera muy significativa a determinar el clima global de la tierra y el porcentaje de CO2 de la atmósfera y, como el resto de los bosques, tienen un valor incalculable para la biodiversidad. Además, constituyen el mayor depósito de carbono en forma orgánica viva en el planeta, almacenado principalmente en el suelo y la hojarasca (López-Colón & García, 2011).

Limites

La taiga límita con la tundra al norte, es la línea de bosque. Mientras que el limite sur se puede dar por un lado con los bosques templados caducifolios y por otro, con las estepas y praderas frías (en función de si estamos al E o al O de los continentes). Este último límite se localiza en los 50-60º de latitud (Sánchez, 2019).

Limites latitudinales del bosque boreal

El paso de tundra a taiga no es una línea perfecto, si no que encontramos el gradiente de tundra-taiga. Lo que ocurre es que desde las zonas de tundra vamos encontrando progresivamente zonas con pocos árboles (los cuales tendrán problemas de crecimiento: estarán retorcidos, con ramas muertas por la congelación) de pequeño tamaño, y poco a poco según nos movamos al sur habrá más densidad de árboles hasta llegar a las taigas (donde la densidad de árboles es muy alta). El espacio que hay entremedias de la tundra y la taiga se puede llamar de varias formas, una de ellas es la de tundras forestales.

Clima

Los inviernos son largos y severos, presentando 6 meses con temperaturas por debajo de los 0 °C y los veranos son cortos presentando desde 50 hasta 100 días sin heladas, períodos en donde la temperatura está entre los 10 y 19°C. Se caracteriza por un clima frio y humedo (Sánchez, 2019).

  • Precipitación anual media: 250-500 (800) mm principalmente en verano
  • Tª mínima de invierno: -10/-30 ºC (hasta -70°C)
  • Media del mes más cálido: > 10°C (máximas > 30°C)
  • Tª superior a 5ºC durante 4-5 meses al año

Vegetación

En general, hay grandes extensiones de bosques de coníferas ocasionalmente mezcladas con especies caducifolias, y salpicados de lagos y turberas. Son las áreas boscosas continuas más extensas del planeta. Son pobres en especies (dominan 5-10 especies de coníferas) y hay flora “joven” que recolonizó el norte desde el sur tras las glaciaciones.

Las diferentes Conífera en diferentes regiones son las de Escandinavia (Pinus sylvestris y Picea abies) y el Norte de Siberia (Larix, Pinus (varias especies, incluida el P. sylvestris)). Si nos vamos a la región Neártica, en Norteamérica (Picea, Larix, Abies, Pinus, Chamaecyparis, Tsuga). Estas coníferas se combinan con especies caducifolias. Las principales caducifolias son: Populus, Betula, Salix, Alnus y Fraxinus. Esto da lugar a bosques mixtos de hoja caduca. Los abedules suelen ser dominantes, dado que son capaces de estar en zonas encharcadas donde las coníferas se desarrollan muy mal.

En cuanto a las turberas, cubren hasta el 10% del terreno. En ellas encontramos muchas especies de muchos musgos (Sphagnum, etc.) cárices (Carex, Eriophorum), arbustos rastreros y herbáceas

Adaptaciones de la vegetación (Sanchez, 2019)

Necesitan adquirir resistencia al frío y al estrés hídrico (invernal), por lo que presentan las siguientes adaptaciones:

  • Forma cónica. Ramas descendentes para acumular menos nieve
  • Polinización anemófila. “Flores” agrupadas en conos
  • Hojas aciculares: con área foliar reducida, gruesas y cubiertas por ceras
  • Disminución punto de congelación (pérdida de agua y aumento de la concentración de solutos (azúcares)

Necesitan hacer un uso eficaz de los nutrientes, por lo que presentan adaptaciones como:

  • hoja perenne (hasta 7 años, excepto alerces, genero Larix, no son perennifolios)
  • menor requerimiento de nutrientes cada año
  • comienzo rápido de la fotosíntesis tras invierno

Fauna

Encontramos grandes herbívoros (alce, reno y ciervo), medianos (ardillas, castores, glotón americano), grandes carnívoros (oso y lobo), medianos (zorro, mustélidos, tejón, marta, comadreja, visón, etc.). En invierno acoge la fauna de tundra (búho nival, zorro ártico, oso polar, glotón) (Sánchez, 2019).

Al ser un ecosistema muy forestal hay una gran variedad de aves forestal, adaptadas a zonas cerradas (carpinteros, paseriformes, piquituerto, tetraonidae (faisanes, urogallo), cascanueces, etc.) con picos adaptados para abrir las piñas y comer las semillas.

Adaptaciones de la fauna (Sanchez 2019; Ibáñez, 2008).

La fauna se caracteriza por tener adaptaciones que permitan una resistencia al frío

  • Pelajes densos y gruesos de color invernal.
  • Grandes reservas de energía almacenada en forma de grasa
  • Procesos de hibernación y migraciones

REFERENCIAS

Ibáñez, J (2008). La Taiga. Madridmasd. Disponible en: https://www.madrimasd.org/blogs/universo/2008/09/15/100924 [Último acceso: 04 sep. 2020]

Lomolino, M.V., Riddle, B.R. y Brown, J.H. (2006). Biogeography. 3rd
edition. Sinauer Associates Inc., Massachusets, USA.

López-Colón, J., García, J. (2011). Los bosques boreales. Ecologistas en Acción. Disponible en: https://www.ecologistasenaccion.org/7015/los-bosques-boreales/ [Último acceso: 04 sep. 2020]

Sánchez, J. (2019) La taiga: 6 cuestiones fundamentales para entender su importancia. Ecosiglos. Disponible en: https://ecosiglos.com/taiga/ [Último acceso: 04 sep. 2020]

Descenso en la biodiversidad de aves en EE.UU. a causa de insecticidas en tan solo 6 años.

El insecticida acusado de matar a las abejas también acaba con los pájaros
Estornino pinto o estornino común (‘Sturnus vulgaris’)

Los insecticidas neonicotinoides se están utilizando de forma generalizada y han generado gran preocupación en la conservación de especies no objetivo como es el caso muchas especies de aves. En este artículo científico se demuestra que el aumento en el uso de neonicotinoides condujo a reducciones significativas en la biodiversidad de aves entre un periodo temporal muy reducido (2008-2014).

Si quieres saber más: https://www.nature.com/articles/s41893-020-0582-x

Referencia: Li, Y., Miao, R. & Khanna, M. Neonicotinoids and decline in bird biodiversity in the United States. Nat Sustain (2020).

La pérdida del pastoreo como principal causa de la matorralización en pastizales de alta montaña.

Vista del Macizo de Peñalara a la izquierda de la imagen. También se observa el Cerro Valdemartín, y detrás, asoman las Cabezas de Hierro por donde discurre la Cuerda Larga. Se aprecia (en amarillo) la intensa floración primaveral de los piornales característicos del piso oromediterráneo, y, en primer término, la estructura de los pastizales psicroxerófilos crioromediterráneos, con algunos enebros dispersos.

La matorralización es un fenómeno ecológico que puede definirse como el aumento de densidad, cobertura y biomasa de plantas leñosas o arbustivas autóctonas (Van Auken 2009). Este fenómeno es común en muchos biomas áridos y semiáridos del planeta (Eldridge, 2011). Las plantas leñosas están desplazando comunidades de herbáceas alrededor de la Tierra, incluidas la tundra ártica y la alpina (Maestre et al. 2009; Formica et al. 2018). Este fenómeno ha sido estudiado en ecosistemas de zonas áridas y semi-áridas donde las transiciones de pastizal a matorral durante los últimos 150 años han sido más que frecuentes (van Auken 2000; Maestre et al. 2009).

El avance de plantas termófilas desde las zonas costeras hacia el interior observado en las últimas décadas ha sido asociado al calentamiento global experimentado durante el mismo periodo de tiempo, pero este no es el único motivo de que se produzca este efecto (Sanz-Elorza et al. 2003; Formica et al. 2018). Los cambios en los usos del suelo, en particular el pastoreo de ungulados o el ganado, también pueden afectar a la distribución de las plantas leñosas (Van Bogaert et al. 2011; Formica et al. 2018). Estudios observacionales sugieren que el pastoreo podría frenar el avance hacia zonas interiores de especies arbustivas, favoreciendo así el mantenimiento de los pastizales de alta montaña (Van Bogaert et al. 2011). Los estudios a largo plazo proponen que el pastoreo tiene mayor correlación con la matorralización de los pastizales de alta montaña que el aumento de las temperaturas, por lo que es de vital importancia considerar los usos históricos del suelo (Hofgaard et al. 2010; Formica et al. 2018).

Las especies que habitan en los pastizales de alta montaña tienen una gran problemática en cuanto a su conservación. El alto grado de intervención humana en muchos de estos ecosistemas los han vuelto dependientes de las actividades humanas que durante décadas los han modelado dotándolos de funcionalidades características. Debido al abandono de las actividades humanas en estos ecosistemas, se ha generado una pérdida de biodiversidad y de calidad del paisaje por simplificación de estos ecosistemas (Fernández & Lago, 2008).

Un ejemplo de este fenómeno puede encontrarse en el piso crioromediterráneo del Parque Nacional de la Sierra de Guadarrama donde la vegetación potencial correspondería a los pastizales psicroxerófilos crioromediterráneos, pertenecientes al Hieracio myriadeni-Festucetum curvifoliae, pero donde se está produciendo una transición en la estructura de la vegetación de las especies de pastizal a las de matorral como Juniperus comunnis subsp. alpina y Cytisus oromediterraneus (Sanz-Elorza 2003).

Bibliografía

  1. Van Auken, O.W. (2009). Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management 90: 2931–2942.
  2. Eldridge, D. J., Bowker, M. A., F. T. Maestre, J. F. Reynolds, E. Roger & W. G. Whitford. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecology Letters 14: 709–722.
  3. Maestre, F. T., Bowker, M. A., Puche, M. D., Belén Hinojosa, M., Martínez, I., García‐Palacios, P., … & Carreira, J. A. (2009). Shrub encroachment can reverse desertification in semi‐arid Mediterranean grasslands. Ecology Letters 12: 930-941.
  4. Formica A, Farrer EC, Ashton IW, et al (2018) Shrub Expansion Over the Past 62 Years in Rocky Mountain Alpine Tundra : Possible Causes and Consequences Shrub expansion over the past 2 years in Rocky Mountain alpine tundra : possible causes and consequences. Arctic, Antarctic, and Alpine Research 3: 616-631.
  5. Sanz-Elorza et al (2003) Changes in the High-mountain Vegetation of the Central Iberian Peninsula as a Probable Sign of Global Warming. Climatic Change 61: 251–257.
  6. Van Bogaert R, Haneca K, Hoogesteger J, et al (2011) A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. Journal of Biogeography 38: 907-921.
  7. Hofgaard A, Løkken JO, Dalen L, Hytteborn H (2010) Comparing warming and grazing effects on birch growth in an alpine environment – a 10-year experiment. Plant Ecology & Diversity, 3:1, 19-27.
  8. Fernández Arroyo, R., & Lago, A. (2008). programa de promoción, apoyo y sensibilización para la conservación de las montañas. p.48.

¿Cuándo se acaba una pandemia?

En esta Ted Talk se habla de las estrategias de gestión que pueden llevarse a cabo durante una pandemia.

La OMS probablemente declarará el fin de la pandemia una vez que la infección esté mayormente contenida y las tasas de transmisión disminuyan considerablemente en el mundo. Esto puede llevar desde meses hasta años en función de las estrategias que se sigan. En la charla se habla de 3 estrategias para acabar con una pandemia:

  • Exposición llana: los gobiernos no toman medidas y dejan que la población se infecte rápidamente. Los hospitales se saturan, los médicos tienen poca información sobre cómo tratar a los pacientes y se producen miles de muertes. Se va adquiriendo una inmunidad colectiva y cuando el virus se queda sin gente a la que poder infectar (hospedadores), la pandemia termina.
  • Retardar y Vacunar: la estrategia consiste en crear inmunidad colectiva de una forma más lenta, adoptando medidas de distanciamiento social, pruebas de detección, aislamiento de positivos… Todo esto da tiempo a los científicos a desarrollar una vacuna y la propagación del virus se ralentiza. Las vacunas tardan tiempo en desarrollarse por lo que con estas medidas se controla la pandemia en algunos lugares pero al relajar las medidas de aislamiento, vuelve a rebrotar. Cuando una parte considerable de la población esté vacunada o haya adquirido inmunidad tras pasar el virus, la pandemia llegará a su fin. 
  • Coordinar y contener: la idea es privar al virus de huéspedes en todo el planeta mediante acciones coordinadas de aislamiento, restricción de viajes… Se debe tratar el asunto de forma coordinada entre países actuando como una sola entidad y no como naciones separadas e independientes. Si esto ocurriese, la pandemia se acabaría rápidamente pero el virus podría atacar de nuevo porque no se ha desarrollado apenas inmunidad. Es una solución complicada ya que requiere una coordinación global.

Actualmente la vía de Retardar y Vacunar es la que la mayoría de los países está adoptando. Aunque las vacunas pueden tardar años en desarrollarse, durante ese tiempo los médicos aprenden sobre el virus y los efectos que tiene en el cuerpo. De esa manera se reducen las muertes gracias a los tratamientos y métodos de prevención. 

Debemos ser pacientes, sabemos que la pandemia acabará y durante ese tiempo habremos desarrollado sistemas de prevención de futuras pandemias. 

Puedes ver la charla completa aquí (en inglés, subtítulos en español):

Fuente de la imagen: https://cutt.ly/UfquxoI

Posidonia oceanica, the jewel of the Mediterranean / Posidonia oceanica, la joya del Mediterráneo

Posidonia oceanica
Posidonia oceanica meadow in Formentera / Pradera de Posidonia oceania de Formentera / CSIC

English Version:

Summer it’s nearly to finish, and surely more than one has gone on holiday to the beach. We all have felt the hot sand between the toes, and trying not to burn we accelerate the passage, until we reach the ideal place to leave the towel and the chair. We look at the sea on the horizon and notice the breeze hitting our face, with that salty flavour. We approach the shore and stop to watch as the small waves reach our feet. What a feeling of peace. The holiday in our beloved Mediterranean Sea are incredible. Many people only know this about the sea. People don’t enter and don’t matter what there is and what is happening in this sea that we all love.

The Mediterranean Sea also suffering the global warming. In fact, it is warming faster than the global ocean. This has great repercussions for organisms and biogeochemical cycles. According to some studies, The Mediterranean Sea is warming at 0.61ºC per decade (Garcias-Bonet et al, 2019). In the Mediterranean Sea, seagrass ecosystems are very common, these ecosystems are very productive, it provides for many species shelter and food, thanks to relatively high rate of primary production (Stramska and Aniskiewicz, 2019). The seagrasses recognized as ecosystem engineers because it makes essential edaphic modifications, such as control of sediment deposition and stabilization of soft bottoms (Toniolo et al, 2018). Also, these meadows reduce the action of the waves, protect the coast, increase water clarity and mitigate the climate change by acting carbon sinks (Garcias-Bonet et al, 2019). It has been estimated that seagrass meadows accumulate up to 18% of total oceanic carbon, despite cover only about 0.2% of the global ocean floor. Unfortunately, it is also among the most endangered ecosystems on Earth. The main causes for this include climate change and negative impacts from human activities (Stramska and Aniskiewicz, 2019).

The most relevant seagrass species in The Mediterranean Sea are Posidonia oceanica, an endemic long-living species, and Cymodocea nodosa, a species found in the eastern Mediterranean Sea and on the northeastern Atlantic coast (Garcias-Bonet et al, 2019). This species develops in shallow waters, from 0 and 40m depth (Toniolo et al, 2018). P. oceanica forms monospecific meadows generally or mixed meadows and it is found in different substrates and habitats, from rocks to sandy bottoms (Bethoux y Copin-Motegut, 1986). P. oceanica is a large, long-living but very slow-growing seagrass and is estimated that cover a surface area between 2.5 and 5 million ha. The basic requirements for P. oceanica survival are similar to requirements of all plants. The main factor that influence growth are water temperature, light for photosynthesis, availability of nutrients and inorganic carbon. Also influence the exposure to mechanical disturbances like waves and currents that can destroy the meadows (Stramska and Aniskiewicz, 2019).

As for the water temperature, it is thought that optimal temperatures for P. oceanica growth are around 15.5 to 18 ◦C. In addition, temperatures above 27ºC have been shown to increase the mortality of the species. Therefore, water temperature can define the geographical limits of growth of oceanic P. oceanica. In aquatic ecosystems, light is a limiting factor. With depth the light is attenuated exponentially, for this reason, the presence of the species is limited to shallow water. However, it has developed growth strategies to acclimatize to the shortage of light, such as a reduced shoot density in deep waters. This species needs lower nutrient requirements than macro algae and phytoplankton. Today there isn´t knowledge about the importance of inorganic carbon limitation for the species. Also require oxygen. Leaves are usually situated in the oxygenated water column, but roots and rhizomes are buried in anoxic sediments. If the water column becomes hypoxic or anoxic, the below ground tissue may experience lack of oxygen, increasing the mortality (Stramska and Aniskiewicz, 2019).

Other thing we don´t know, the Mediterranean Sea consists of species with great importance for the functioning of our planet. Posidonia oceanica is a species with a decreasing population trend and some studies estimate that it will be extinguished between 2049 and 2100 as a result of the increase in mortality caused by global warming. (Garcias-Bonet et al, 2019). We have to be aware of the importance of biodiversity in the seas and oceans and protect it while enjoying it on our vacations.

Versión en español:

El verano esta llegando a su fin, y seguro que más de uno se ha ido de vacaciones a la playa. Todos hemos sentido la sensación de la arena caliente entre los dedos del pie, intentando no abrasarnos aceleramos el paso, hasta llegar al lugar idóneo para dejar la toalla y la silla. Miramos el mar en el horizonte y notamos la brisa golpeando nuestra cara, con ese aroma salado. Nos acercamos a la orilla y nos paramos a observar como las pequeñas olas llegan hasta nuestros pies. Que sensación de paz. Que increíbles son unas vacaciones en nuestro querido Mar Mediterráneo. Mucha gente solo conoce esto del mar. La gente no se adentra y no se preocupa por saber qué hay y qué esta ocurriendo en este mar que a todos nos encanta.

El Mar Mediterráneo también esta sufriendo el calentamiento global. De echo, se esta calentando mas rápido que el océano global. Esto tiene grandes repercusiones para los organismos y los ciclos biogeoquímicos. Según algunos estudios el Mar Mediterráneo se calienta 0,61ºC por década (Garcias-Bonet et al, 2019). En el Mar Mediterráneo, los ecosistemas de pastos marinos son muy comunes, estos ecosistemas son muy productivos y proporcionan refugio y alimento para muchas especies, gracias a una tasa relativamente alta de producción primaria (Stramska y Aniskiewicz, 2019). Incluso se reconoce que los pastos marinos son ingenieros de ecosistemas porque realizan modificaciones edáficas esenciales, como el control de la deposición de sedimentos y mantener estables los suelos blandos (Toniolo et al, 2018). También reducen la acción de las olas, protegen la costa, aumentan la claridad del agua y mitigan el cambio climático actuando como sumideros de carbono (Garcias-Bonet et al, 2019).Se ha estimado que retienen hasta el 18% del carbono total oceánico a pesar de ocupar tan solo el 0,2% del suelo oceánico global. Sin embargo, también están entre los ecosistemas mas amenazados del planeta. Las principales causas son el cambio climático y los impactos negativos de las actividades humanas (Stramska y Aniskiewicz, 2019).

Las especies de hierbas marinas mas importantes en este mar son Posidonia oceanica, una especie endémica de larga vida y Cymodocea nodosa, una especie que se encuentra en el Mediterráneo oriental y en la costa atlántica del noreste. Los prados de Posidonia oceanica se han convertido en Bioindicadores oficiales mundialmente (Garcias-Bonet et al, 2019).Esta especie se desarrolla en aguas poco profundas, entre 0 y 40 m de profundidad (Toniolo et al, 2018). Forma praderas monoespecíficas generalmente, aunque también forma praderas mixtas, y se encuentra en sustratos y hábitats diferentes, desde rocas hasta fondos arenosos (Bethoux y Copin-Motegut, 1986). Es una hierba marina grande, de vida larga pero de crecimiento lento, se estima que cubren un área de superficie entre 2,5 y 5 millones de ha. Los requerimientos básicos para la supervivencia de P. oceanica son análogos a los requerimientos de las plantas. Los factores principales que influyen en el crecimiento son la temperatura del agua, la luz para la fotosíntesis, la disponibilidad de nutrientes y el carbono inorgánico. También influye la exposición a modificaciones mecánicas como las olas y las corrientes que pueden destrozar los prados. (Stramska y Aniskiewicz, 2019).

En cuanto a la temperatura del agua, se piensa que la temperatura optima para el crecimiento de P. oceánica ronda entre los 15,5 y 18ºC. Además, se ha demostrados que temperaturas superiores a 27ºC aumentan la mortalidad de la especie. Por tanto, la temperatura del agua puede definir los limites geográficos de crecimiento de P. oceanica. En los ecosistemas acuáticos, la luz es un factor limitante. Con la profundidad la luz se atenúa exponencialmente, por esta razón, su presencia se limita a aguas poco profundas. No obstante, ha desarrollado estrategias de crecimiento para aclimatarse a la escasez de luz, como por ejemplo una densidad reducida de brotes en aguas profundas. Esta especie necesita menos disponibilidad de nutrientes que las macroalgas y el fitoplancton. Actualmente no hay muchos conocimientos acerca de la importancia que tiene la limitación de carbono inorgánica para la especie. También requieren oxígeno. Las hojas generalmente están situadas en la columna de agua oxigenada, pero las raíces y los rizomas están enterrados en sedimentos anóxicos. Si la columna de agua se vuelve hipóxica o anóxica, el tejido subterráneo puede experimentar falta de oxígeno, aumentando la mortalidad (Stramska y Aniskiewicz, 2019).

Aunque no lo sepamos, el Mar Mediterráneo consta de especies de gran importancia para el funcionamiento de nuestro planeta. Posidonia oceanica es una especie con una tendencia poblacional decreciente y algunos estudios estiman que se extinguirá entre 2049 y 2100 como consecuencia del aumento de mortalidad provocado por el calentamiento global (Garcias-Bonet et al, 2019). Tenemos que ser conscientes de la importancia de la biodiversidad existente en los mares y océanos, y protegerla a la vez que disfrutamos de ella en nuestras vacaciones.

Bibliography

Bethoux, J., Copin-Motegut, G. (1986). Biological fixation of atmospheric nitrogen in the Mediterranean Sea. Limnology and Oceanography 31(6): 1353-1358.

Garcias-Bonet, N., Vaquer-Sunyer, R., Duarte, C., Núria Marbà, N. (2019). Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences 16(1): 167–175.

Stramska, M., Aniskiewicz , P. (2019). Recent Large Scale Environmental Changes in the Mediterranean Sea and Their Potential Impacts on Posidonia Oceanica. Remote Sens 11(1): 110.

Toniolo, C., Di Sotto, A., Di Giacomo, S., Ventura, D., Casoli, E., Belluscio, A., Nicoletti, M., Ardizzone, G. (2018). Seagrass Posidonia oceanica (L.) Delile as a marine biomarker: a metabolomic and toxicological analysis. Ecosphere 9(3).

Los delfines del índico-pacífico pueden usar esponjas como herramientas de protección

En este increíble hilo de Twitter, Alex nos cuenta cómo estos delfines son capaces de utilizar esponjas para proteger sus hocicos de las rozaduras y cortes de las rocas y así poder cazar peces en el fondo marino. Además, esta conducta se transmite culturalmente de madres a hijas.

Si quieres saber más, lee el hilo completo aquí:

Disminución drástica en la población de insectos alados

Abeja
Fotografía de una abeja / Velasco, 2007. Fuente: Flickr.

Un nuevo estudio liderado por Caspar Hallamann alerta sobre la disminución de la población de insectos alados en reservas y parque naturales de Alemania.

Supongo que habréis oído hablar de la desaparición de las abejas. Seguramente no os parezca tan mala noticia, menos probabilidad de sufrir una de sus picaduras. No obstante, no solo está disminuyendo la población de las abejas, sino que toda la población de insectos alados se está viendo reducida drásticamente.  Se estima que las poblaciones de mariposas de pastizal europeas han disminuido en un 50% en abundancia. En otros datos referentes a taxones mejor estudiados como es el caso de las abejas y las polillas, se puede observar la misma tendencia decreciente (Hallamann et al. 2017).

Este acontecimiento ha despertado un gran interés en la comunidad científica, en los políticos y el público en general. Y con razón, ya que se espera que la perdida de diversidad y abundancia de los insectos alados tenga efectos secundarios en las redes tróficas, poniendo en peligro el funcionamiento de los ecosistemas (Hallamann et al. 2017).

Los insectos tienen gran importancia en un ecosistema. Estos organismos forman un grupo abundante y diverso, donde el número de especies se estima en el orden de millones a nivel mundial (Guzman, 2010). Estos establecen relaciones bióticas con animales y plantas. Un claro ejemplo de estas relaciones es el mutualismo entre plantas con flor (angiospermas) e insectos. Este mutualismo ha generado un proceso de coevolución dando como resultado el aumento de la diversidad biológica en ambos grupos de seres vivos (Guzman, 2010). Si os interesa este tema del mutualismo os dejo un artículo publicado por mi compañera Sara Atienza sobre Coevolución en las referencias.

Hay varias opiniones respecto a la desaparición de estos organismos. Algunas causas propuestas son el cambio climático, la perdida y fragmentación del hábitat, y el deterioro de la calidad del mismo (Hallamann et al. 2017).  Sin embargo, un estudio publicado en PLOS ONE pone en duda estas hipótesis. El nuevo estudio, dirigido por Caspar Hallamann de la Universidad de Radboud ha descubierto que, en reservas y parques naturales alemanes, la población de insectos alados ha disminuido en más del 75% desde 1990 (Villarreal, 2017). Estudios anteriores, también señalan este declive, pero se centraban en especies concretas, como las abejas. Lo característico del nuevo estudio es que se ha centrado en un espectro más amplio, observando el declive en los insectos alados (Villarreal, 2017). Para medir la biomasa total de insectos, los investigadores han utilizado trampas Malaise desplegadas en 63 áreas protegidas de Alemania, durante la primavera, verano y principios de otoño (Hallamann et al. 2017). Esta medición de la biomasa (peso de la captura de insectos en cada trampa) les ha permitido conocer la caída en el número de insectos.

Como ya se ha mencionado, la causa de esta disminución de biomasa aún no se conoce, lo que es bastante desconcertante. Modelos previos a este estudio estimaban una pérdida del 58% pero ninguno prevenía un declive del 82% de insectos que el equipo de Hallamann ha encontrado durante su estudio en estas últimas décadas. Los investigadores advierten de una necesidad urgente por descubrir las causas de esta catástrofe, dado que los datos observados se han tomado en zonas destinadas a proteger la biodiversidad (Villarreal, 2017).

REFERENCIAS

Atienza, S. (2017). “¿Coevolu…qué?”. Ecotoxsan. Disponible en: https://ecotoxsan.blog/2017/05/31/coevolu-que/ [Último acceso: 23 Ene. 2018]

Guzmán, R. (2017). “Los insectos: antiguos contructores del mundo”. Elementos, 17 (79) http://www.elementos.buap.mx/num79/htm/29.htm

Hallmann CA.; Sorg, M.; Jongejans, E.; Siepel, H.;  Hofland, N.; Schwan, H.; et al. (2017). “More than 75 percent decline over 27 years in total flying insect biomass in protected areas.” PLOS ONE, 12 (10): e0185809. https://doi.org/10.1371/journal.pone.0185809

Villarreal, A. (2017). “¿Dónde han ido todos los insectos? Ya no están ni en los espacios protegido”. Madrimasd. Disponible en: http://www.madrimasd.org/notiweb/noticias/donde-han-ido-todos-los-insectos-ya-no-estan-ni-en-los-espacios-protegidos [Último acceso: 19 Ene. 2018]

Arde Galicia

Estas atrocidades contra el medio natural se repiten cada año sin que el Gobierno tome medidas suficientes para la protección de nuestros bosques. Teñir de negro nuestro patrimonio natural es atentar contra todo un país que hoy llora desconsoladamente por unas vidas que ya no volverán. Los hogares, negocios y, lo más importante, la vida de la población y la de todos los voluntarios y bomberos que luchan contra el fuego, está en juego estos días.

No dejemos que el fuego nos consuma. Firma esta petición para cambiar la ley de Montes (que permite la recalificación de terrenos quemados), aboga por la repoblación con especies autóctonas y el refuerzo a la prevención de incendios. Ya somos más de 15.000 personas: http://bit.ly/2icSeWq

Cómo la simbiosis entre hongos y plantas puede mejorar la productividad agrícola en las condiciones del calentamiento planetario (y de paso dar de comer a los emprendedores)

How can you protect crops against global warming? One answer: find the secrets of plants that already thrive in the most punishing climates, says microbiologist Rusty Rodriguez.

a través de The surprising plant-fungi relationship that could help feed us, even as the world heats up — ideas.ted.com

La contaminación térmica del agua y los riesgos para la biodiversidad

 Información preparada por el alumno Carlos Cano Barbacil de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica

La contaminación térmica es un tipo de contaminación física que produce un deterioro de la calidad del agua y del aire principalmente como consecuencia de una variación de la temperatura.

La principal causa de la contaminación térmica son los sistemas de refrigeración de las centrales termoeléctricas y nucleares, que emplean agua en grandes cantidades para enfriar su fluido de proceso, y la devuelven con un incremento de temperatura entre 5 y 15ºC (Mihursky, 1970). En Estados Unidos, por ejemplo, el 48% del agua empleada en el año 2000, se destinó a refrigerar plantas termoeléctricas (Turpin, 2004). En menor medida, las aguas residuales urbanas, que suelen estar a una temperatura mayor que la del ambiente, e incluso la eliminación de la vegetación de ribera, que provoca la desaparición de la sombra, pueden generar un aumento de la temperatura del agua.

Esta contaminación acarrea graves problemas sobre todo para la biodiversidad acuática, provocando cambios en la composición y calidad de las aguas. En el caso concreto de la energía nuclear, las emisiones térmicas pueden generar hasta el 90% de los todos daños que sufre un ecosistema acuático de agua dulce (Verones, 2010).

Estos efectos, aunque en muchos casos, difíciles de establecer y predecir, llevan estudiándose desde hace largo tiempo. Ya en los años 60 se sabía que los cambios de temperatura en las aguas, generados por vertidos térmicos, provocaban un aumento en la incidencia de determinadas enfermedades sobre los peces. Un incremento en la temperatura de las aguas estimula la actividad y proliferación bacteriana y parasitaria, mientras que aumenta la susceptibilidad de los peces a sufrir cualquier enfermedad o infección. Este es el caso del parásito Kudoa clupeidae, que infecta al arenque con mayor frecuencia cuando este está sometido a un estrés térmico (Mihursky, 1970).

Los peces y otros organismos acuáticos pueden verse afectados por la falta de oxígeno en el agua, ya que al aumentar la temperatura disminuye la solubilidad de los gases en el agua, alterando su tasa de respiración. Los vertidos térmicos pueden provocar además cambios en la tasa de crecimiento, alimentación, reproducción y desarrollo embrionario, afectando así al ecosistema en su conjunto y a su distribución espacial. Esto provoca, tal y como se ha demostrado en la Bahía Grande de Ilha (Brasil), diferencias significativas entre las comunidades de dos zonas control y otra afectada por vertidos térmicos, donde la riqueza y diversidad de especies de peces es mucho menor (Teixeira, 2009).

Otros efectos conocidos son el blanqueo de la Tridacna gigas o almeja gigante, que convive en simbiosis con las algas unicelulares zooxantelas. Un incremento en la intensidad de la luz y de la temperatura del agua provoca una disminución del número de zooxantelas por unidad de superficie y de su contenido en clorofila (Dubinsky, 1996).

Un efecto similar al anteriormente citado ocurre con la ruptura en la relación simbiótica entre el microalga dinoflagelada Symbiodinium spp. y los corales, pues algunas especies de Symbiodinium son sensibles al aumento de temperatura, generando mayores cantidades de peróxido de hidrógeno (H2O2) y provocando el blanqueamiento del coral (Suggett, 2008).

Se ha probado que tanto la riqueza como la diversidad de especies de foraminíferos está correlacionada negativamente con la contaminación térmica de las aguas (Arieli, 2011).

Un aumento en la temperatura de las aguas puede al mismo tiempo favorecer a poblaciones de determinadas especies, provocando la invasión y colonización de ecosistemas en los que no se encontraban originalmente (Slynko, 2002).

Las soluciones a este problema son complejas, pues pasan principalmente por reducir el uso de la energía nuclear y de las plantas termoeléctricas, apostando por energías renovables como la eólica, o la solar para generar electricidad. Otra forma de reducir el problema, aunque sin eliminarlo plenamente, es implementar condensadores con mayores eficiencias que permitan reducir el caudal de agua de refrigeración empleada. En la actualidad, la mayoría de centrales cuentan con una torre de evaporación con la que se consigue reducir en parte la temperatura del agua mediante la cesión de calor latente de vaporización; sin embargo esto acarrea otra serie de problemas asociados como la concentración de sales y la modificación de las propiedades físico-químicas del agua.

Como se ha comprobado, la contaminación térmica puede provocar severos daños sobre las diferentes poblaciones y comunidades de los ecosistemas tanto marinos como dulceacuícloas.

BIBLIOGRAFÍA

Arieli, R. N. et al. (2011). The effect of thermal pollution on benthic foraminiferal assemblages in the Mediterranean shorface adjacent to Hadera power plant (Israel). Marine Pollution Bulletin 62: 1000-1002.

Dubinsky, Z. et al. (1996). Marine pollution and coral reefs. Global Change Biology 2:511-526.

Mihursky, J. A. et al. (1970). Thermal pollution, aquaculture and pathobiology in aquatic systems. Journal of Wildlife Diseases 6: 347-355.

Slynko, Y. V. et al. (2002). The Caspian-Volga-Baltic invasion corridor. Invasive Aquatic Species of Europe: 399-411.

Suggett, D. J. et al. (2008). Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. Journal of phycology 44: 948-956.

Teixeira, T. P. et al. (2009). Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay, Brazil. Marine Environmental Research 68: 188-195.

Turpin, J.R. (2004). A solution for thermal pollution. Engineered Systems: 44-50.

Verones, F et al. (2010). Characterization factors for thermal pollution in freshwater aquatic environments. Environmental Science & Technology 44: 9364-9369.