“España y EE UU desarrollan una técnica única para ver el genoma humano” | madrimasd

Una herramienta permite desarrollar por primera vez un mapa completo de la complejísima estructura tridimensional de la información genética, esencial para entender nuestra biología y todas las enfermedades.

Puedes leer el artículo completo en: https://cutt.ly/ssKM3ol

Fuente de la imagen: https://cutt.ly/UsKMSzN

¿Por qué huelo a pescado? La trimetilaminuria o síndrome del olor a pescado, una enfermedad rara.

La trimetilaminuria o síndrome del olor a pescado es una enfermedad rara de origen genético que provoca un fuerte olor corporal a pescado podrido en los pacientes que la sufren. Fue descrita por primera vez en 1970 y afecta a 1 de cada 40.000 personas. Es un defecto genético no ligado al sexo pero se diagnostica en mayor medida en las mujeres (Álvarez et al., 2009).

¿Qué es una enfermedad rara?

Un enfermedad rara o poco frecuente es aquella que presenta una baja prevalencia en la población. En Europa se considera rara aquella enfermedad que afecta a menos de 5 casos por cada 10.000 habitantes. Hasta el momento se han identificado más de 6.000 enfermedades raras (EURORDIS, 2020).

Se estima que entre el 3,5 y el 5,9% de la población mundial está afectada por estas enfermedades. En cuanto a su causa, más del 70% tienen origen genético, como es el caso de la trimetilaminuria (Wakap et al., 2019).

¿Por qué se produce ese olor desagradable?

La sustancia responsable de este olor es la trimetilamina (TMA), una sustancia volátil con olor a pescado podrido. La TMA es generada por las bacterias intestinales a partir de moléculas como la colina o carnitina presentes en los alimentos que consumimos habitualmente (Cho y Caudill, 2017).

En condiciones normales, la TMA es absorbida por las células intestinales, viajando por la vena porta hepática hasta el hígado donde las FMO, una familia de enzimas que oxidan xenobióticos y drogas para facilitar su excreción, cataliza la conversión de la TMA en TMAO (trimetilamina N-óxido, un compuesto sin olor). Este TMAO es excretado principalmente por la orina (Cho y Caudill, 2017).

Cuando existe una mutación en los genes que codifican para la FMO, concretamente la FMO3, la cantidad de esta enzima se reduce. Esto provoca un descenso en la transformación de TMA a TMAO, por lo que el cuerpo excreta la TMA directamente por el sudor, orina, aliento y otras secreciones, manifestándose un olor fuerte similar al pescado podrido (Cho y Caudill, 2017).

El diagnóstico de esta enfermedad se puede realizar midiendo los niveles de TMA en la orina que en el caso de los pacientes con esta condición son mucho más elevados que en pacientes sanos. Esta medición se realiza tras la ingesta de una sobrecarga de TMA (600 mg de TMA). Posteriormente se puede realizar un estudio genético para detectar con exactitud la mutación presente (Álvarez et al., 2009).

¿Cómo se hereda la enfermedad?

La enzima FMO3 está codificada por el gen FMO3, localizado en el brazo largo del cromosoma 1 (Álvarez et al., 2009).

En un trastorno autosómico recesivo, es decir, deben estar presentas dos copias de un gen anormal para que se desarrolle esta enfermedad. Por tanto, la madre y el padre deben ser al menos portadores del gen defectuoso. Si solo uno de los padres posee el gen defectuoso, el hijo puede heredar ese gen pero no padecer la enfermedad porque posee una copia no defectuosa del otro padre (Álvarez et al., 2009).

En este esquema vemos cómo se da la herencia de esta enfermedad cuando los padres son portadores pero no la padecen:

aaaaaaaaaaaaaaaa

¿Existen grados de afección?

Sí, la trimetilaminuria es una condición genética en la que el gen que codifica para la enzima FMO3, la cual oxida la TMA, es defectuoso. Este gen es altamente polimórfico, lo que permite una actividad enzimática variable y, por tanto, un desarrollo de la enfermedad más o menos grave según la mutación presente (Álvarez et al., 2009).

En otras palabras, si la mutación es leve la cantidad de enzima generada está cercana a valores normales por lo que el olor será más discreto. En cambio, en los casos en los que la mutación es grave y no hay apenas generación de la enzima, la TMA no va a poder ser transformada y el olor será muy intenso (Álvarez et al., 2009).

Las mutaciones P153L y E305X se relacionan con los casos más graves de esta enfermedad (Hernandez et al., 2003).

¿Cómo afecta esta enfermedad a los pacientes? ¿Existe cura?

La excreción de grandes cantidades de TMA en forma de orina, sudor, aliento y otras secreciones corporales no supone toxicidad para el cuerpo. El síntoma principal es este fuerte olor desagradable. Por tanto, el principal problema que sufren los pacientes es a nivel psicológico y social.

Las consecuencias psicológicas asociadas a esta enfermedad pueden ser graves (trastornos de la personalidad, obsesión por la higiene corporal, cuadros de ansiedad y síndromes depresivos graves) debido al aislamiento y el rechazo social. Esto impide a los pacientes el desarrollo de una vida normal en muchos de los casos (Álvarez et al., 2009).

Actualmente el tratamiento consiste en un control de la dieta, reduciendo los alimentos que poseen precursores de la TMA como la colina. Esta dieta es baja en pescados, crustáceos, huevos, carne, algunas legumbres y verduras y debe ser pautada por un nutricionista. Se ha visto una considerable mejora en la calidad de vida de los pacientes que siguen estas pautas (Álvarez et al., 2009).

También se utilizan algunos fármacos que interfieren en la producción de TMA por parte de la microbiota intestinal pero no se aconseja su uso continuado (Álvarez et al., 2009).

Testimonios:

Aquí os muestro un par de testimonios de dos mujeres, Kelly y Michelle, que sufren la enfermedad en distinto grado:

Vídeo 1 (en inglés): Kelly posee esta rara condición que limita su vida diaria. El acoso escolar fue una constante en su infancia y adolescencia. Ella no nota otros síntomas aparte del olor pero los efectos secundarios que esta condición conlleva son ansiedad y aislamiento social. De hecho, Kelly trabaja en el turno de noche para evitar coincidir con tanta gente ya que en el trabajo ha recibido quejas de sus compañeros.

Vídeo 2 (subtitulado en castellano): En algunas personas el olor es constante mientras que en otras es intermitente, como en el caso de Michelle. Ella también sufre trimetilaminuria pero su olor solo se manifiesta durante la menstruación. Según el doctor Robin Lachmann, experto en enfermedades metabólicas, los valores normales de TMA en la orina varían entre 2,5 y 10,9. Las primeras muestras enviadas por Michelle cuadruplicaban esta cantidad pero se redujeron significativamente a valores casi normales tras seguir una estricta dieta baja en producción de TMA.

 

En conclusión, las enfermedades raras tienen una baja prevalencia en la población y una sintomatología muy variada que dificulta y retrasa su diagnóstico. Los conocimientos e investigación son limitados, lo que dificulta enormemente la vida de los pacientes y sus familias al no tener un tratamiento y en muchos casos, ni siquiera un diagnóstico.

Es muy importante dar a conocer estas enfermedades a la sociedad y promover la colaboración con asociaciones dedicadas a la investigación en métodos de diagnóstico y tratamientos, terapias rehabilitadoras, suministro de fármacos en familias con pocos recursos… Si quieres colaborar (donaciones, voluntariado, eventos…) puedes hacerlo en la Federación Española de Enfermedades Raras (FEDER). Os dejo su página web donde podéis ver toda la información: https://enfermedades-raras.org/index.php

BIBLIOGRAFÍA

Álvarez, T. M., Guardiola, P. D., Roldán, J. O., Elviro, R., Wevers, R., y Guijarro, G. (2009). Trimetilaminuria: el síndrome de olor a pescado. Endocrinología Y Nutrición, 56(6), 337-340.

Cho, C. E. y Caudill, M. A. (2017). Trimethylamine- N -Oxide: Friend, Foe, or Simply Caught in the Cross-Fire?. Trends in Endocrinology & Metabolism, 28(2), 121-130.

EURORDIS (2020). ¿Qué es una enfermedad rara?. Última visita el 25 de Julio de 2020 de: https://cutt.ly/GsgnSzd

Hernandez, D., Addou, S., Lee, D., Orengo, C., Shephard, E. A., y Phillips, I. R. (2003). Trimethylaminuria and a human FMO3 mutation database. Hum Mutat, 22(3), 209-213.

Wakap, S. N., Lambert, D. M., Olry, A., Rodwell, C., Gueydan, C., Lanneau, V., … Rath, A. (2019). Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. European Journal of Human Genetics, 28(2), 165-173.

Fuente de la imagen de cabecera: https://cutt.ly/8a2veR4

Los diferentes organismos modelo. Capítulo 7: insectos

Los insectos son el grupo más numeroso del reino animal, hay un millón de especies descritas y se estima que hay entre 6 y 10 millones de especies sin descubrir (Wilson, 2015). Los insectos representan el 80% de las especies animales conocidas en la actualidad (García et al, 2012). Fueron los primeros animales en volar y son los únicos invertebrados con dicha capacidad (Wilson, 2015). En cuanto a su taxonomía, pertenecen al filo Arthropoda, al subfilo Hexapoda y a la clase Insecta.  

Dentro del filo Artropodos, son el subfilo mas importante y a su vez, esta clase se ha dividido en al menos 30 ordenes(Wilson, 2015). No obstante, su clasificación es bastante compleja a causa de su gran diversidad. La clase insecta se divide en dos subclases, en función de la presencia y estructura de las alas García et al, 2012):

  • Subclase Apterigotos: insectos sin alas, se trata de un grupo menos evolucionado. No presentan metamorfosis.
  • Subclase Pterigotos: insectos con alas o secundariamente ápteros, son un grupo más evolucionado, más especializados y más abundante que el de los Apterigotos. Se divide en dos infraclases:
    • Neópteros: las alas están plegadas hacia atrás.
    • Paleópteros: no plegan las alas sobre el abdomen.
collage
Insectos. A: Escarabajos, B: tijereta, C: Mosca, D: chinche, E: abeja, F: mariposa, G: saltamontes, H: caballito del diablo. / Pixabay.com. Collage por Gómez, M (2020).

Dentro de los neópteros, los ordenes mas importantes son: coleópteros (escarabajos, gorgojos, mariquitas, cantáridos, etc), dermápteros (tijeretas), dípteros (moscas y mosquitos), hemípteros (chinches y cigarras), himenópteros (abejas, avispas y hormigas), lepidópteros (mariposas y polillas) y ortópteros (saltamontes y grillos). En paleópteros, destaca el orden odonatos (libélulas y caballitos del diablo) (García et al, 2012 & Contreras, 2014).

Los insectos presentan una anatomía externa común, presentan un exoesqueleto compuesto por placas duras, impermeables y ligeras llamadas escleritos, unidas por articulaciones flexibles. Su cuerpo esta diferenciado en tagmas (García et al, 2012):

aparatosbucales
Sistemas bucales de insectos
  • Cabeza (1 par de antenas, ojos compuestos, hasta 3 ocelos y diversos aparatos bucales).
  • Torax (3 segmentos; 3 pares de patas y hasta 2 pares de alas).
  • Abdomen (9 -11 segmentos con apéndices muy reducidos o ausentes, a veces 2 a 3 cercos).

En cuanto a los sistemas bucales, se pueden diferenciar 4 básicos: (A) aparato masticador ej., ortópteros), (B) cortador-chupador (ej., himenópteros), (C) chupador en espiritrompa (lepidópteros) y (D) chupadorr (ej., dípteros).

Los insectos respiran por un sistema de tráqueas, por su sistema circulatorio circula hemolinfa. Normalmente son ovíparos, y la mayoría no suelen cuidar los huevos hasta su eclosión. Tras la eclosión, muchos  sufren metamorfosis (Contreras, 2014). Por ejemplo los saltamontes experimentan una metamorfosis incompleta, en estado juvenil (ninfa) es muy parecido al adulto pero en miniatura. En cambio, las mariposas sufren una metamorfosis completa, la cría (larva) pasa por cuatro fases distintas hasta alcanzar el aspecto adulto (Wilson, 2015).

Los insectos son muy diversos en su modo de vida. Han surgido en tierra firme, pero tienen una gran capacidad de adaptación y por eso se pueden encontrar en zonas de agua dulce y costeras, en desiertos, en las cumbres más elevadas, etc. (García et al, 2012). También existen insectos parásitos como los piojos o las ladillas. Sin embargo, dado que no pueden sobrevivir a la congelación, no hay insectos en los polos. En las zonas tropicales es donde se encuentra la mayor diversidad de insectos (Contreras, 2014).  Sin embargo, sí hay un insecto capaz de habitar en la Antártida, el insecto  Belgica antárctica (Alvarez, 2018).

Los insectos no se deben confundir con los arácnidos, escorpiones, crustáceos o ciempiés que también son artrópodos, pero no insectos. El insecto más pequeño mide alrededor de 150 micrómetros, mientras que el más grande, durante el carbonífero (hace 350 ma.) llegó a medir 75 cm (Contreras, 2014).

Drosophila melanogaster

Drosophila melanogaster es conocida como la mosca de la fruta o del vinagre. Esta especie es un pequeño insecto dentro del orden dípteros (Valls, 2011). Los dípteros presentan ojos compuestos grandes y en general, 3 ocelos. Un aparato bucal chupador-picador. Las alas anteriores son transparentes y presentan poca venación, mientras que las posteriores están modificadas en halterios o balancines (García et al, 2012). Las moscas de género Drosophila son unas 900 especies de pocos milímetros distribuidad por todo el planeta, salvo en climas extremos. Drosophila melanogaster  se alimenta de las colonias de levadura que crecen encima de manzanas, uvas, plátanos y otras frutas dulces (Valls, 2011).

Captura de pantalla 2020-04-26 a las 16.32.08
Fotografía de un díptero, en vista dorsal (García et al, 2012).

La mosca de la fruta es uno de los organismos modelo con mayor renombre en la investigación. Este organismo lleva más de cien años dentro del laboratorio. Inicialmente se uso para experimentos sobre evolución, dado su corto ciclo de vida (10-15 días) permitía estudiar la aparición y transmisión de mutaciones en generaciones sucesivas, sometidas a diferentes condiciones ambientales. Posteriormente se vio la idoneidad de esta especie para estudios genéticos. A partir de las moscas mutantes, Thomas H. Morgan, Alfred Sturtevant, Calvin B. Bridges y Hermann Müller  realizaron diversos experimentos, los cuales constituyen el cuerpo de la Teoría cromosómica de la Herencia (Valls, 2011).

Hoy en día, este organismo esta siendo muy útil en los estudios del cáncer, en los procesos de formación de tumores y metástasis. También permite estudiar temas relacionados con la conducta, algunos de estos  estudios se centran en los ritmos circadianos entre actividad e inactividad, otros se fijan en aspectos como el aprendizaje y la memoria a partir de las reacciones olor y el gusto. También conductas relacionadas con la acción a las drogas y el alcohol, para determinar qué mecanismos celulares y moleculares básicos que hay detrás de las conductas adictivas (Valls, 2011).

Capítulo 6.

REFERENCIAS

Alvarez, J (2018).El único insecto de la Antártida, que puede sobrevivir dos años congelado, es también el único animal terrestre que vive allí. La brújula verde. Disponible en: https://www.labrujulaverde.com/2018/05/el-unico-insecto-de-la-antartida-que-puede-sobrevivir-dos-anos-congelado-es-tambien-el-unico-animal-terrestre-que-vive-alli [Último acceso: 26 Abr. 2020].

Contreras, R. (2014). Los insectos. La guía. Disponible en: https://biologia.laguia2000.com/zoologia/los-insectos [Último acceso: 26 Abr. 2020].

García, A., Outerelo, R., Ruiz, E., Aguirre, J., Almodóvar, A., Alonso, J., Benito, J., Arillo, A. (2012). Prácticas de Zoología Estudio y diversidad de los Artrópodos Insectos. Reduca (Biología). Serie Zoología. 5 (3): 42-57.

Wilson, E. (2015). Insectos (hacia 400000000 a C.). En: Gerald, M. & Gerald, G. (eds). El libro de la biología. Del origen de la vida a la epigenética, 250 hitos de la historia de la biología: 36. Librero, AB Kerkdriel, Países Bajos.

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 26 Abr. 2020].

Los diferentes organismos modelo. Capitulo 5: plantas

Ya en el 2017, en mi artículo “Descontaminación de suelos mediante el uso de plantas transgénicas” os hable de la importancia que puede tener la modificación genética en plantas, tanto para el ser humano como para el medio ambiente.  En dicho artículo mencionaba el uso de la especie Arabidopsis thaliana, como planta transgénica en la fitorremediación, la cual es capaz de acumular mercurio (Hg), una de las sustancias más tóxicas.

Aunque A. thaliana no sea de los organismos modelo más famoso entre la población (fuera del laboratorio es considerada una mala hierba) como tal vez si lo sean los ratoncitos blancos (Mus musculus) y las moscas de la fruta (Drosophila melanogaster), es una de las plantas mas estudiadas globalmente a nivel genético y fisiológico (Busoms, 2016).

La planta A. thaliana pertenece a la familia de las crucíferas (Brassicaceae), a la que pertenecen unas 4 mil especies (Poveda, 2018). Entre estas especies destacan algunas de interés agrícola como la col (Brassica oleracea) y el nabo (Brassica napus) (Valls, 2011). La especie protagonista de este artículo esta distribuida por todos los continentes (es cosmopolita), es una planta anual de pequeño tamaño, entre 10 y 30 cm (Povedad, 2018), presenta un ciclo de vida relativamente corto (unas 6 semanas) y es un organismo muy prolífico, siendo capaz de producir hasta 10000 semillas por individuo, las cuales son viables varios años. También es capaz de autofecundarse, es decir, es autógama (Busoms, 2016). Presenta 4 pétalos en las flores, las cuales son blancas, con forma de cruz (por esta razón pertenece a las crucíferas) (Poveda, 2018). Dichas flores son pequeñas y hermafroditas (órganos reproductores masculinos y femeninos). En cuanto al fruto, es una silicua de unos 4 cm de largo y 2 mm de ancho, pudiendo albergar hasta 30 semillas por silicua (Valls, 2011). Las semillas serán dispersadas por el viento, este tipo de dispersión es conocido como “dispersión anemócora”.

Arabidopsis
Representación gráfica de la planta Arabidopsis thaliana / Poveda, 2018.
Silicuas-y-semillas-de-A.-thaliana
Silicuas y semillas de A. thaliana / Poveda, 2018.

Esta planta, a simple vista, no parece gran cosa y mucho menos que tenga algún interés para el ser humano. Esto puede deberse a que no destaca visualmente para ser una especie ornamental y sus órganos no son atractivos para su consumo. No obstante, como os he dicho al principio, es un organismo modelo de los mas importantes y estudiados en investigación sobre biología molecular, genética y fisiología vegetal (Poveda, 2018). Es cierto que su uso en el laboratorio ha sido bastante tardío, y consolidado en la década de los años 80 (Valls, 2011). Arabidopsis thaliana  consta de 7 características principales por las que ha sido elegida organismo modelo: su pequeño tamaño y fácil manejo, su corto tiempo de generación, su autopolinización y número de semillas producidas, su pequeño genoma y su número reducido de cromosomas (Poveda, 2018). Estas características permiten que cultivarla en invernaderos y cámaras de cultivo sea bastante sencillo. Además su pequeño genoma, secuenciado completamente en el año 2000, permite su manipulación por ingeniería genética de manera fácil y rápida en comparación con otras especies de plantas (Valls, 2011).

Con esta especie se investigan muchos procesos biológicos. A nivel genético, gracias a la creación de mutantes, se han logrado desarrollar grandes conocimientos en el mundo vegetal, como en los procesos de germinación y floración, crecimiento radicular, síntesis de la pared celular, entre otros (Poveda, 2018). Sin embargo, la investigación con A. thaliana  también es muy útil en ecología, es decir, interacciones con otras plantas al rededor de su medio ambiente. A nivel ecológico se estudian las respuestas de dicha planta a condiciones estresantes de tipo abiótico (como condiciones de salinidad, sequía, heladas, etc.) o bien cómo reacciona ante ataques de patógenos y plagas. Un ejemplo de este tipo de investigaciones, a nivel ecológico, es el estudio realizado por  Sílvia Busoms y su equipo (2015) en Cataluña. Estos científicos estudian la tolerancia que presentan las poblaciones costeras de A. thaliana ante la salinidad del medio ambiente en el que se encuentran.

Para leer el capítulo anterior: capítulo 4.

Para leer el siguiente capitulo: capítulo 6

Para leer mi artículo: “Descontaminación de suelos mediante el uso de plantas transgénicas”.

REFERENCIAS

Busoms, S.; Teres, J.; Huang, X.; Bomblies, K.; Dnaku, J.; Douglas, A.; Weigel, D.; Poschenrieder, C.; Salt, D. E. (2015). Salinity is an agent of divergent selection driving local adaptation of Arabidopsis thaliana to coastal habitatsPlant Physiology 168 (3): 915-929. doi: 10.1104/pp.15.00427.

Busoms, S (2016). “Arabidopsis thaliana, no sólo una planta de laboratorio. Importancia de las poblaciones silvestres catalanas.” UABDivulga [online]. Disponible en: https://www.uab.cat/web/detalle-noticia/arabidopsis-thaliana-no-solo-una-planta-de-laboratorio-importancia-de-las-poblaciones-silvestres-catalanas-1345680342040.html?noticiaid=1345695163636 [Último acceso: 21 Feb 2020].

Poveda J. (2018).  “Arabidopsis thaliana: la “mala hierba” que alcanzó la cima de la ciencia vegetal”. [online]. Disponible en: https://naukas.com/2018/01/11/arabidopsis-thaliana-la-mala-hierba-que-alcanzo-la-cima-de-la-ciencia-vegetal/ [Último acceso: 21 Feb 2020].

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 21 Feb 2020].

 

Descubren firma genética en los nativos americanos

Investigadores de Brasil, España y Estados Unidos, descubren una firma genética en los nativos americanos que los relaciona a todos con un origen común en Beringia.

Esta señal genética las permite digerir mejor los alimentos con grasas, y los investigadores encontraron 3 variaciones SNP en el ADN de los nativos americanos, 1 de ellas coincide con la ya descubierta en los inuit, y que es muy frecuente en nativos americanos pero baja el resto del mundo.

Aquí puede leer un resumen y visualizar los artículos y mapas descriptivos.

“CRISPR-Cas, la revolución en edición genética” por el Dr. Lluís Montoliu

Ayer, 28 de septiembre de 2018, con motivo de la celebración de la Noche Europea de los Investigadores, tuve el placer de poder asistir a una magnífica charla sobre la herramienta CRISPR-Cas impartida por el Dr. Lluís Montoliu en la Fundación Francisco Giner de los Ríos (Institución Libre de Enseñanza).

Montoliu nos ha explicado de una forma muy visual cómo funciona el CRISPR, el sistema inmunitario de las bacterias y arqueas. Se denomina CRISPR a un conjunto de repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas, es decir, secuencias repetitivas entre las cuales encontramos fragmentos de material genético vírico. Las proteínas Cas reconocen el material genético exógeno procedente de los virus gracias a un ARN guía complementario a los fragmentos situados entre las repeticiones. Estas proteínas cortan el material genético vírico, destruyéndolo e impidiendo así la infección.

Este sistema posee una base genética y es, por lo tanto, heredable. Es decir, una vez que la bacteria adquiera resistencia al virus tras estar en contacto con él, todas las generaciones venideras lo serán. Es un sistema en continua actualización pues los virus mutan con el tiempo y pueden penetrar este sistema de protección.

Francisco Mojica es el autor de este descubrimiento revolucionario, por el cual está nominado al Nobel en las categorías de Química y Medicina. Jennifer Doudna y Emmanuelle Charpentier desarrollaron una técnica basada en este sistema que permitía modificar el ADN, el CRISPR-Cas, popularmente conocido como las tijeras genéticas.

Montoliu nos ha hablado sobre las diferentes aplicaciones de esta técnica en campos tan dispares como la medicina y la agricultura. Además, ha hecho especial hincapié en la necesidad de un desarrollo completo de estas técnicas para garantizar su seguridad antes de ser aplicadas en humanos. En su laboratorio estudian las aplicaciones del CRISPR en enfermedades como el albinismo. En la página web de su laboratorio podéis encontrar gran cantidad de información sobre CRISPR y sobre los trabajos que realizan acerca del albinismo: https://bit.ly/2DMfTai

Además, mi compañero Raúl escribió un artículo sobre CRISPR, disponible en este enlace: https://bit.ly/2R3mP5A

Por último, dar las gracias al Dr. Lluís Montoliu por acercar la ciencia a todos los ciudadanos y despertar el gusanillo investigador en muchos de nosotros.

Cursos sobre Ciencias Biológicas

El Instituto Universitario Elbio Fernández, a través de la plataforma Miríada X, ofrece 3 cursos sobre Ciencias Biológicas donde adquirirás formación básica sobre biología, genética, zoología, histología… Estos MOOCs son de acceso gratuito.

¡No os los pierdáis!

Os dejo los enlaces a los tres cursos:

Charla “Yo soy yo y mi epigenética”

Gracias a una estancia en el CSIC que hice con el proyecto “4º + empresa” que organizan los institutos, conocí a Enrique,  un gran profesional que no hizo más que reafirmarme en mi deseo de ser científica. Desde entonces sigo su blog “Ciencia con Chocolate” a través del cual organizan charlas sobre temas muy diversos, estableciendo un punto de encuentro para todos los interesados en ciencia.

Os dejo el enlace a su blog: http://cienciaconchocolate.blogspot.com.es/

La próxima charla “Yo soy yo y mi epigenética” será impartida por José Fernández Piqueras, doctor en Ciencias Biológicas y Catedrático de Genética de la UAM. Será el  miércoles 14 de febrero a las 19:00 en Pangea, C/Príncipe de Vergara 26, Madrid.

¡No os la perdáis!

Ojos azules y piel oscura; así era un cazador-recolector europeo de hace 7.000 años

El análisis del ADN de un individuo de hace 7.000 años revela que los primeros europeos tenían los ojos azules y la piel morena.

Leer noticia aquí:

http://www.csic.es/web/guest/noticias-y-multimedia?p_p_id=contentviewerservice_WAR_alfresco_packportlet&p_p_state=maximized&_contentviewerservice_WAR_alfresco_packportlet_struts_action=%2Fcontentviewer%2Fview&_contentviewerservice_WAR_alfresco_packportlet_nodeRef=workspace%3A%2F%2FSpacesStore%2Fd32553f8-ac97-4a00-ad0e-bd7b966e8963&_contentviewerservice_WAR_alfresco_packportlet_gsa_index=false&_contentviewerservice_WAR_alfresco_packportlet_title=noticias

Los neandertales siguen vivos en nuestro genoma

Los genes neandertales que se conservan en nuestro material genético no son una simple herencia, producto de las hibridaciones del pasado, sino que afectan de manera significante a rasgos imprescindibles para nuestra adaptación.

Leer noticia aquí:

http://elpais.com/elpais/2017/02/23/ciencia/1487868615_293495.html