Contaminación por plásticos y las poblaciones de albatros de Laysan

 Información preparada por el alumno  JORGE ROMERO GARCIA de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica

Introducción

Desde mitad del siglo XX en la zona del Pacífico norte se ha venido observando un incremento de la cantidad de contaminación por plásticos, hasta tal punto de formarse lo que actualmente se conocen como “islas de plástico”, que son los lugares donde se concentran los residuos plásticos movidos por las corrientes, estas concentraciones tienen numerosas afecciones al medio ambiente y la biodiversidad (Gregory 1999).

Algunos estudios tratan de localizar el origen de estos plásticos (Nilsen et al. 2014), esta tarea no es fácil pues provienen de prácticamente todos los países y tienen un tiempo de residencia en el medio marino muy largo, esto hace de este problema algo global, con multitud de focos de emisión.

El albatros de Laysan (Phoebastria immutabilis), un ave autóctona de Hawaii se ha visto afectada desde el inicio del incremento de las concentraciones de plásticos en el mar, su forma de alimentarse hace que involuntariamente los plásticos flotantes sean tragados por estas aves. Desde finales del siglo XX se ha observado como las cantidades de individuos fallecidos con plásticos en su interior alcanza el 90%. (Fry et al. 1987; Auman et al. 1997).

Problemática

A los problemas que genera el hecho de la ingesta directa del plástico, como puede ser la asfixia o la formación de úlceras que producen la muerte de los individuos (Fry et al. 1987), hay que añadir problemas de reciente descubrimiento como la intoxicación de individuos por la ingesta de plásticos con metales pesados asociados, por lo que la ingesta de plásticos se ha convertido en una ruta de entrada para los metales traza en el organismo. Esto se ha demostrado en más de 170 especies de aves marinas, por lo que es una vía importante para la entrada de estos metales en la cadena trófica (Lavers & Bond 2016).

En el caso concreto del albatros de Laysan el hecho de que sea una especie autóctona de Hawaii y cuya población principal se encuentra en la isla de Laysan hacen que si este problema se agudiza la especie pueda tener problemas de conservación, pues actualmente un alto porcentaje (más del 25%) de los individuos jóvenes de esta especie ya superan las tasas de ingestas de plásticos que permiten una vida saludable para las aves (Lavers & Blond 2016).

Este problema en lugar de reducirse, como cabría de esperar tras el descubrimiento del problema el siglo pasado, se va aumentando, pues los residuos y la consecuente ingesta siguen subiendo también. Además aunque los datos existentes para el albatros de Laysan no son representativos de otras especies pues no existe una tasa fija de ingesta de plásticos, es lógico pensar que otras especies podrían llegar a verse amenazadas también si no se le pone solución al problema, por lo que podría suponer un riesgo para la biodiversidad.

Referencias

Gregory, M. R. (1999). Plastics and South Pacific Island shores: environmental implications. Ocean & Coastal Management, 42(6), 603-615.

Fry, D. M., Fefer, S. I., & Sileo, L. (1987). Ingestion of plastic debris by Laysan albatrosses and wedge-tailed shearwaters in the Hawaiian Islands. Marine Pollution Bulletin, 18(6), 339-343.

Auman, H. J., Ludwig, J. P., Giesy, J. P., & Colborn, T. H. E. O. (1997). Plastic ingestion by Laysan albatross chicks on Sand Island, Midway Atoll, in 1994 and 1995. Albatross biology and conservation, 239244.

Nilsen, F., Hyrenbach, K. D., Fang, J., & Jensen, B. (2014). Use of indicator chemicals to characterize the plastic fragments ingested by Laysan albatross. Marine pollution bulletin, 87(1), 230-236.

Lavers, J. L., & Bond, A. L. (2016). Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Marine pollution bulletin, 110(1), 493-500.

La marea de plásticos que contamina los océanos se cuela en la sal de mesa

Todos conocemos los preocupantes índices de contaminación por plásticos que asolan nuestros mares y océanos. Reducir el uso de envases, bolsas y demás productos plásticos puede ayudar pero, ¿qué pasa cuando los que están en el mar se degradan? ¿O con los microplásticos presentes en los cosméticos?

Un estudio reciente ha demostrado que estos microplásticos se cuelan en nuestra mesa cuando usamos el salero y otros muchos han confirmado su presencia en el agua que bebemos.

Puedes leer la noticia completa aquí: http://bit.ly/2fU3Adk

Si quieres ampliar información sobre el tema, te recomiendo este artículo de mi compañera Mónica: https://ecotoxsan.blog/2017/03/03/los-ecosistemas-marinos-son-atacados-por-los-plasticos/

Contaminación por amianto

 Información preparada por la alumna  BELEN MONCALVILLO GONZALEZ  de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica.

El amianto o asbestos es un grupo de compuestos de silicatos de magnesio de cadena doble (Oury et al., 2014), que aparece habitualmente en baja concentración en rocas serpentínicas (Meyer, 1980). Es ubicuo prácticamente en todo el mundo y puede presentarse en múltiples variables (tremolita, crisotilo o amianto blanco, crocidolita o asbesto azul, entre otros). Se ha utilizado desde la época griega, pero su uso se generalizó durante el siglo XX. Su resistencia a la corrosión y degradación térmica, su resistencia tensil y su hábito fibroso lo convirtieron en un compuesto tan habitual en materiales de construcción y aislamiento de edificios, de la industria textil y de la naviera que llegó a denominárselo “mineral milagroso” (Oury et al., 2014).

A pesar de esta denominación, el riesgo del amianto para la salud se hizo evidente en pocas décadas. Alrededor del mundo se han registrado numerosos casos de altas mortalidades asociadas a la exposición a este material. Algunos ejemplos son: los alrededores de una explotación minera en Sudáfrica (Wagner et al., 1960); trabajadores de recubrimientos aislantes para edificios en Nueva York (Selikoff et al., 1964); varios tipos de industrias en Gran Bretaña (Doll, 1993); trabajadores de fábricas textiles en China (Yano et al., 2001); o una fábrica de cementos en Barcelona, que estuvo en activo desde 1907 hasta 1997 (Tarrés et al., 2009).

El amianto es un contaminante tóxico, es decir, un polutante. Se asocia principalmente a la contaminación atmosférica, ya que aparece en el aire en forma de micropartículas, provocadas por la erosión del viento o de otros agentes meteorológicos sobre el material y por los procesos industriales asociados a su manipulación (Oury et al., 2014). Por lo tanto, el amianto afecta principalmente a las vías respiratorias, causando irritaciones o asma. Una sobreexposición continuada a esta sustancia suele desencadenar cáncer de pulmón o mesotelioma de pleura (Wagner et al., 1960). Además, una vez dentro del organismo puede ser traslocado y causar cáncer del tracto intestinal (Oury et al., 2014). Más allá de su presencia en la atmósfera, las partículas de amianto terminan por depositarse en el suelo y los sistemas acuáticos (Mustapha et al., 2003), aumentando su capacidad de dispersión y pudiendo llegar a contaminar fuentes de abastecimeinto de agua y comida (Oury et al., 2014).

La contaminación por amianto, desde minas o fábricas, se produce de manera puntual y desciende a medida que aumenta la distancia al foco de emisión. Su incidencia se extiende frecuentemente dos kilómetros a la redonda, pero pueden encontrarse partículas de amianto hasta a cinco kilómetros (Magnani et al., 2000). Debido a su uso industrial, la contaminación en amianto se da principalmente en zonas urbanas. Llegó a ser tan generalizada, que en los años sesenta se detectó su presencia en el 20% de la población de Tejas y en la de Sudáfrica (Oury et al., 2014). Además, su peligrosidad se ve acentuada debido a que sus efectos en humanos pueden tardar entre 20 y 40 años en ser apreciables (Mustapha et al., 2003).

Como se ha explicado, debido a sus alarmantes riesgos, el amianto ha sido el foco de atención de numerosos estudios epidemiológicos. Incluso se ha realizado   experimentación animal, principalmente con ratas y ratones (Wagner et al., 1974; Walton, 1982; Doll, 1993; Landrigan et al., 2004) y lombrices de tierra (Schreier y Timmenga, 1986). Sin embargo, esta atención toxicológica ha reducido el estudio de su ecotoxicología y sus efectos sobre los ecosistemas son poco conocidos (Mustapha et al., 2003). Las partículas de amianto que llegan al suelo y al agua son susceptibles de incorporarse a organismos vivos. Igual que ocurre con el ser humano, la sobreexposición al amianto es letal para los animales estudiados (Schreier y Timmenga, 1986), pero pequeñas dosis no letales pueden acumularse a lo largo de la cadena trófica. Mustapha et al. (2003) comprobaron mediante biomonitorización en una zona de India que el amianto se encontraba presente en lombrices, caracoles y plantas, y que su concentración aumentaba en depredadores del ecosistema como ranas y peces, produciéndose un fenómeno de biomagnificación.

Por otra parte, la descontaminación del amianto suele centrarse en eliminar sus fuentes de emisión, es decir, retirar los productos que lo contienen (Oury et al., 2014). No obstante, aún no es posible eliminarlo de manera efectiva del medio natural. En yacimientos de amianto y suelos contaminados, se han intentado aplicar métodos de fitorremediación, pero el la vegetación tiene serias dificultades para establecerse en suelos serpentínicos (Meyer, 1980). Los estudios más recientes indican que la bioaumentación, enriqueciendo el suelo con los nutrientes necesarios, facilita este crecimiento de la vegetación. Las leguminosas y algunas plantas aromáticas son algunos grupos propuestos para secuestrar las partículas de amianto y evitar que pasen a cultivos agrícolas (Kumar y Maiti, 2015; Kumar et al., 2015).

En la actualidad, el amianto se ha eliminado de la mayoría de los procesos industriales, al menos en los países desarrollados. La Unión Europea restringió su uso, con el objetivo de eliminarlo progresivamente, en 1987 (Decreto 87/217/EECC). Otras potencias, como Estados Unidos o Australia, también se han hecho eco de ello en su legislación (Oury et al., 2014). A pesar de todo, el amianto continúa siendo un problema, dado que sus efectos en la salud humana pueden tardar varias décadas en ser apreciables y su impacto en los ecosistemas aún no está suficientemente estudiado.

 

Como curiosidad, aquí tenéis dos vídeos acerca de la contaminación ambiental del amianto:

  • Vertedero de amianto en Toledo (del minuto 59:30 al 1:13:40):

http://www.rtve.es/alacarta/videos/la-manana/manana-03-10-16/3742550/

  • Reportaje de Informe semanal de 2003 acerca de las muertes causadas por sobreexposición laboral al amianto en estibadores (descargadores de mercancías de barcos):

http://www.rtve.es/alacarta/videos/informe-semanal/fue-informe-amianto-muerte-blanca-2003/1896888/

 

BIBLIOGRAFÍA

European Union, Council Directive 87/217/EEC of 19 March 1987 on the prevention and reduction of environmental pollution by asbestos

Doll, R. (1993). Mortality from lung cancer in asbestos workers 1955. British journal of industrial medicine50(6), 485.

Kumar, A., & Maiti, S. K. (2015). Effect of organic manures on the growth of Cymbopogon citratus and Chrysopogon zizanioides for the phytoremediation of Chromite-Asbestos mine waste: A pot scale experiment. International journal of phytoremediation17(5), 437-447.

Kumar, A., Maiti, S. K., Prasad, M. N. V., & Singh, R. S. (2015). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. Journal of Soils and Sediments, 1-11.Landrigan, P. J., Lioy, P. J., Thurston, G., Berkowitz, G., Chen, L. C., Chillrud, S. N., … & Perera, F. (2004). Health and environmental consequences of the world trade center disaster. Environmental health perspectives112(6), 731.

Magnani, C., Agudo, A., Gonzalez, C. A., Andrion, A., Calleja, A., Chellini, E., … & Mirabelli, D. (2000). Multicentric study on malignant pleural mesothelioma and non-occupational exposure to asbestos. British Journal of Cancer83(1), 104.

Meyer, D. R. (1980). Nutritional problems associated with the establishment of vegetation on tailings from an asbestos mine. Environmental Pollution Series A, Ecological and Biological23(4), 287-298.

Musthapa, M. S., Ahmad, I., Trivedi, A. K., & Rahman, Q. (2003). Asbestos contamination in biota and abiota in the vicinity of asbestos-cement factory.Bulletin of environmental contamination and toxicology70(6), 1170-1177.

Oury, T. D., Roggli, V. L., & Sporn, T. A. (2014). Pathology of asbestos-associated diseases. New York, NY: Springer.

Schreier, H., & Timmenga, H. J. (1986). Earthworm response to asbestos-rich serpentinitic sediments. Soil Biology and Biochemistry18(1), 85-89.

Selikoff, I. J., Churg, J., & Hammond, E. C. (1964). Asbestos exposure and neoplasia. Jama188(1), 22-26.

Tarrés, J., Abós-Herràndiz, R., Albertí, C., Martínez-Artés, X., Rosell-Murphy, M., García-Allas, I., … & Orriols, R. (2009). Asbestos-related diseases in a population near a fibrous cement factory. Archivos de Bronconeumología ((English Edition))45(9), 429-434.

Wagner, J. C., Sleggs, C. A., & Marchand, P. (1960). Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province.British journal of industrial medicine17(4), 260-271.

Yano, E., Wang, Z. M., Wang, X. R., Wang, M. Z., & Lan, Y. J. (2001). Cancer mortality among workers exposed to amphibole-free chrysotile asbestos.American journal of epidemiology154(6), 538-543.

Wagner, J. C., Berry, G., Skidmore, J. W., & Timbrell, V. (1974). The effects of the inhalation of asbestos in rats. British journal of cancer29(3), 252.

Walton, W. H. (1982). The nature, hazards and assessment of occupational exposure to airborne asbestos dust: a review. Annals of occupational hygiene,25(2), 117-119.

Contaminación por microplásticos

 Información preparada por la alumna   SARA MARIA FERNANDEZ SILES de la asignatura de Contaminación Ambiental y Biodiversidad del Máster Oficial en Técnicas de Caracterización y Conservación de la Diversidad Biológica.
 

El plástico es una clase de polímeros orgánicos sintéticos compuesto de moléculas largas, en forma de cadena y con un alto peso molecular. Aunque es de naturaleza heterogénea, muchas de las clases de plástico se componen de hidrocarburos, los cuales son típicamente derivados de las materias primas de los combustibles fósiles. La contaminación por microplásticos es uno de los problemas más importantes del medio acuático, siendo creciente y global. Provienen de productos cosméticos, pinturas, revestimientos y pellets industriales, así como de la propia descomposición del plástico de mayor tamaño.

Sus dimensiones son de menos de 5 mm, por lo que se escapan de las depuradoras y van a parar a los océanos junto con millones de toneladas de residuos de este mismo material, que han ido acumulándose durante al menos cuatro décadas. Este aumento desmedido en todos los océanos y mares del mundo, es una gran preocupación que debe hacer que nos planteemos sobre sus posibles efectos adversos en los ecosistemas marinos y en la cadena trófica.

Recientemente los Estados Unidos de América reaccionó ante este gran problema por la contaminación existente en Grandes Lagos, y declaró que a partir del 1 de julio del año 2016 se hará vigente la ley que prohíba las microesferas de plástico en productos de cosméticos. A esta medida, también se ha unido el Reino Unido que planea hacerlo antes de que finalice dicho año. Aunque aún no hay estudios que demuestren cuales son los efectos potenciales de este material sobre la salud humana, si se ha podido comprobar que es tóxico para los organismos, y que tiene una gran capacidad de adsorción de los polutantes orgánicos persistentes (POPs). Este hecho hace que exista mayor propensión de bioacumulación de POPs en los organismos marinos. Es bien sabido, que estos últimos contaminantes se biomagnifican en la cádena trófica y producen serias alteraciones en el sistema endocrino.

Se ha documentado la ingestión de microplásticos en más de 200 especies acúaticas, y aunque aún hay pocos, cada vez son más los estudios ecotoxicológicos publicados. En uno de estos estudios se demostró que las microesferas de poliestireno pueden ser ingeridas e inhaladas por el cangrejo común (Carcinus maenas), afectándole significativamente en sus niveles de oxígeno, que aumentaron, así como la disminución de los iones de sodio y el incremento de los iones de calcio en la hemolinfa. Sin embargo estos niveles volvían a la normalidad unas horas después de retirarles las microesferas.

En otra reciente investigación sobre los efectos producidos por la ingestión de microesferas de poliestireno en rotíferos como Brachionus koreanus, se comprobó una reducción en la fecundidad, tasa de reproducción, crecimiento de individuo y esperanza de vida. Estos mismos efectos adversos también se observaron en Daphnia Magna de agua dulce.

En un bioensayo realizado a partir de un mesocosmos se comprobaron los efectos causantes de tres tipos de microplásticos: uno biodegradable como el ácido de poliláctico (PLA) y dos convencionales como el polietileno (PE) y el cloruro de polivinilo (PVC) a concentraciones crecientes, sobre los gusanos marinos Arenicola marina. Se concluyó que tanto el microplastico convencional como el biodegradable afectaban a la salud y alteraba el comportamiento de los gusanos, pero además reducía la productividad primaria de los hábitats. Sin embargo, de todos los tipos de plástico, era el PVC el que producía los efectos más fuertes, pudiendo ser por la lixiviación química de los monómeros de cloruro de vinilo residual en los tejidos, produciendo en algún caso la mortalidad, reducción de la alimentación y una disminución de la inmunidad.

Una de las primeras investigaciones realizadas sobre el efecto de los microplásticos en una población de Scenedesmus obliquus,un microalga verde, se comprobó que reduce su crecimiento así como sus concentraciones de clorofila, produciéndole un aumento del estrés oxidativo, ya que la sustancia que desprende el plástico al descomponerse, penetra y daña las paredes celulares del alga.

En conclusión, esta contaminación “emergente” es muy poco estudiada, pero su continua presencia en el medio acuático los hace pseudo-persistentes ya que los organismos se encuentran en continua exposición. Por ello, deberían realizarse bioensayos con modelos más complejos, donde se puedan realmente determinar los efectos adversos de estos contaminantes sobre los ecosistemas y la cadena trófica. Además, se requiere de una urgente y efectiva gestión en cuanto a residuos plásticos, con mejores estrategias de prevención y mitigación.

BIBLIOGRAFIA

Bessenling, E., Wang, B., Lürling, M., & Koelmans, A. (2014). Nanoplastic affects growth of S.obliquus and reproduction of D.magna. Environmental Science & Technology, 48(23).

James, A., Watts, R., Urbina, M., Goodhead, R., Moger, J., Lewis, C., & Galloway, T. (2016). Effect of microplastic on the gills of the Shore Crab Carcinus maenas. Environmental Science & Technology.

Jeong, C., Won, E., Kang, H., Lee, M., Hwang, D., Hwang, U., Zhou, B., Souissi, S., Lee, S., & Lee, J. (2016) Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-P38 activation in the monogonont rotife (Brachionus koreanus). Environmental Science & Technology.

Koelmans, A., Besseling, E., & Foekema, E. (2014). Leaching of plastic additives to marine organisms. Environmental Pollution, 187, 49-54.

McGoran, A., Clark, P., & Morritt, D. (2016). Presence of microplastic in the digestive tracts of European flounder, Platichthys flesus, and European smelt, Osmerus eperlanus, from the River Thames. Environmental Pollution.

Senga, D., Boots, B., Sigwart, J., Jiang, S., & Rocha, C. (2016). Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environmental Pollution 208, 426-434.

Sjollema, S., Redondo-Hasselerharm, P., Leslie, H., Kraak, M., & Vethaak., A. (2015). Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicology, 170.

Enlaces de noticias:

http://www.lavanguardia.com/ciencia/planeta-tierra/20161003/41741658646/cerco-microplasticos-cosmeticos-reino-unido.html

http://www.larevista.com.mx/internacional/los-rios-y-lagos-de-estados-unidos-estan-cargados-de-microplasticos-diminutos-y-contaminantes-5249