Los diferentes organismos modelo. Capítulo 2: Virus Bacteriófagos

bacteriofago T4. Gónzales, C.
Imagen de un virus bacteriófago T4.

En el capítulo 1 de estar serie,  os comenté la importancia de los organismo modelo en la ciencia. Estos organismos permiten a los científicos obtener una gran información y poder extrapolarla al resto de los organismo. En este capítulo, como su mismo nombre indica os voy a hablar de los virus bacteriófagos.

Para los que no sabéis que son los virus, son agentes infecciosos, con un tamaño entre 10-400nm. Son acelulares, se reproducen utilizando la maquinaria reproductora de una célula hospedadora, por lo que son parásitos obligados. No obstante, poseen información genética propia: dirigen su proceso de replicación y su ácido nucleico codifica para proteínas virales, estructurales o de multiplicación. Hay diferentes formas de clasificarlos:

  • En función al hospedador que parasitan se clasifican en 3 grandes grupos: virus bacterianos o bacteriófagos, virus vegetales y virus animales.
  • Por su forma: helicoidales, icosaédricos y complejos.
  • Según el tipo de ácido nucleico: ADN-virus o ARN-virus.
  • Por la presencia o ausencia de envoltura: envueltos o desnudos.

A pesar de su diversidad, suelen tener algunas características comunes como: una cubierta protectora de proteína o cápside, un genoma de ADN o ARN dentro de la cáspside, y una capa de membrana denominada envoltura, solo presente en algunos virus (Kahn, 2016).

Estructura y forma virus
Imagen 1: Estructura y forma de los virus.

Virus Bacteriófagos:

Los virus bacteriófagos o fagos son aquellos que infectan a las bacterias. Son los mas estudiados. Varían mucho en sus formas y en su material genético. Sus genomas pueden ser de ADN o ARN pudiendo tener desde cuatro genes hasta cientos (Kahn, 2016). Suelen ser virus complejos, pero también hay fagos icosaédricos, y helicoidales.

En las infecciones víricas de los bacteriófagos, existen dos ciclos de vida distintos. Un ciclo de vida lítico o un ciclo de vida lisogénico. 

Ciclo lítico:

Existen diferentes etapas: 

  1. Inicialmente se da una fase de adsorción o fijación donde se unen las proteínas o las fibras de la cola del fago a los receptores específicos de la célula bacteriana. Esta unión es reversible.
  2. Después ocurre la penetración o entrada del virus en la bacteria. En los bacteriófagos ocurre por inyección del ácido nucleico, que pasa desde la cabeza hasta la célula huésped a traves de la cola hueca.
  3. Una vez liberado el ácido nucleico, se inicia su replicación en el citoplasma celular y la síntesis de proteínas virales, utilizando la maquinaria biosintética del hospedador, también en el citoplasma.
  4. Tras esto, tiene lugar una etapa de ensamblaje o maduración, donde las copias de ácido nucleico y de proteínas virales se agrupan formando nuevos virus.
  5. Una vez terminada la multiplicación, los virus salen de la célula provocando la lisis de esta. Durante la fase de liberación, los virus envueltos adquieren su membrana a partir de la membrana de la célula hospedadora, tras insertar en ella proteínas específicas codificadas por el genoma viral.
lítico
Imagen 2: Ciclo lítico en virus bacteriófagos.

Ciclo lisogénico:

No todos los fagos presentan este ciclo, solo pueden usar el ciclo lítico. Pero existen fagos atemperados  que pueden alternar entre ciclo lítico y ciclo lisogénico.

Este ciclo permite a un fago reproducirse, pero sin matar las células de su huésped. Las fases de fijación e inyección del ADN son iguales que en el ciclo lítico. Pero se diferencian en que no se va a copiar ni expresar el ADN,  su ADN se va a incorporar al genoma de la bacteria (pasa a denominarse profago) y  se va a replicar junto con el genoma de la bacteria sin que se produzca la síntesis de los componentes virales ni la liberación de la progenie viral (Kahn, 2016).

Lisogénico
Imagen 3: Ciclo lisogénicos en virus bacteriófagos.

El Fago T4

El bacteriófago mas característico es el Fago T4. Infecta a las bacterias Escherichia coli. Mide unos 200nm, siendo de los fagos mas grandes. Pertenece al grupo T, donde también se incluyen los enterobacteriófagos T2 y T6. Tan solo consta de un ciclo vital lítico, y no lisogénico, que dura unos 30 minutos. Unas de sus características es su alta velocidad de copia del ADN con solo un error por cada 300 copias. Este fago se ha utilizado en estudios sobre la regulación génica, estudios sobre el cáncer y el control de la proliferación celular (Neyoy, 2014).

Estructura del fago T4
Imagen 4: Estructura del Fago T4

REFERENCIAS:

Neyoy, C. (2014). “Organismos modelos en biología”. Apuntes de biología molecular. Disponible en: http://apuntesbiologiamol.blogspot.com.es/2014/03/organismos-modelo-en-biologia.html [Último acceso: 15 Ene. 2018]

Khan, K. (2016). “Virus”. Khan Academy. DIsponible en: https://es.khanacademy.org/science/biology/biology-of-viruses [Último acceso: 3 jun. 2018].

Los diferentes organismos modelo. Capitulo 1: Introducción

Organismos modelo.
Collage de algunos organismos modelos. Imagen A: virus bacteriófago Fago T4 / Gónzales, C.; Imagen B: Echerichia coli / Geralt. 2013; Imagen C: Observación en fresco (levaduras vivas) por microscopía óptica por contraste Nomarsky de una cepa de Saccharomyces cerevisiae / Dr. A.V. Carrascosa. Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM). Imagen D: Arabidopsis thaliana / Universidad de Iowa. Departamento de biología. E. Jefferson St.; Imagen E: imagen de microscopía electrónica del nematodo Caenorhabditis elegans /Juergen Berger, Max Planck Institute for Developmental Biology, Tübingen, Alemania Imagen F: Drosophila melanogaster / AlexWild. Stock de laboratorio en la Universidad de California, San Diego.; Imagen G: Danio rerio / ESD. 2002.; Imagen H: Mus musculus / Greenaway, F.; Collage por Gómez, M. 2018.

La Teoría del Ancestro Común está basada en una teoría del naturalista Charles Darwin. Esta teoría explica cómo cambian las especies a partir de un antepasado común, adaptándose a las condiciones del medio ambiente (Alzabe, 2015). Durante la evolución, las propiedades fundamentales que componen a un ser vivo se han mantenido inalteradas. No obstante, la evolución ha dado lugar a una amplia diversidad de seres vivos. Dado que hay una gran diversidad pero que existen similitudes entre las diferentes especies, se han utilizado organismos modelos para estudiar diferentes aspectos de la biología celular y molecular.

Árbol filogenético de la vida
Árbol filogenético de la vida / Roll, R. 2007

La clasificación de los seres vivos se divide en tres reinos: Archea, Bacteria y Eukarya. Los dos primeros son organismos procariotas, mientras que Eukarya corresponde a los organismos eucariotas. El árbol filogenético demuestra que todos los seres vivos tenemos un grupo de ancestros en común. En las etapas más tempranas del desarrollo de la vida en nuestro planeta, tuvo lugar un mayor intercambio de material genético entre los primeros organismos que surgieron, constituyendo las bases de las futuras especies (Neyoy, 2014).

Gracias a los organismos modelo, la comunidad científica ha podido recopilar gran cantidad de información, ya que proporcionan datos valiosos para el análisis del desarrollo humano, regulación génica, enfermedades y procesos evolutivos. Sin embargo, las investigaciones centradas en estos organismos plantean cuestiones científicas y filosóficas. Estos seres vivos seleccionados representan una ínfima fracción de la biodiversidad que encontramos en el planeta. Por tanto, se debe asumir que la información recopilada de estos organismos se puede extrapolar al resto de organismos considerando un origen común (Valls, 2011).

A la hora de seleccionar los organismos modelo con los que se realizaran los diferentes experimentos de un estudio científico, se deben tener en cuenta varias características que aportan ventajas a los investigadores. Las tres principales características que un organismo debe presentar para ser útil en un laboratorio son su abundancia, su facilidad para criar o cultivar y su facilidad de manipulación en el laboratorio; así como otras características distintivas como embriones de gran tamaño, un linaje celular fijo, transparencia, etc (Valls, 2011).

Como ya he dicho, debido a la diversidad de complejidad entre los seres vivos de los diferentes reinos hubo la necesidad de establecer un abanico de organismos modelo para hacer posible el estudio de una amplia gama de características biológicas (Da Silva, 2017). Entre ellos destacan:

  • En los virus se utilizan virus bacteriófagos como el Fago T4.
  • En los procariotas destaca la bacteria Escherichia coli.
  • En los eucariotas encontramos varios organismos modelos como:
  • Levaduras: Saccharomyces cerevisiae.
  • Plantas: Arabidopsis thaliana.
  • Nematodos: Caenorhabditis elegans.
  • Insectos: Drosophila melanogaster.
  • Peces: Danio rerio.
  • Mamíferos:Mus musculus.

En esta serie de artículos os iré hablando concretamente de estos organismos modelo. Si conocéis algún otro que no esté en esta lista, y queréis que os dé información sobre él, escribidlo en los comentarios.

REFERENCIAS

Alzabe, R. (2015). “La idea de un ancestro común”. BIODIVERSIDAD. Disponible en:http://biodiversidadorigen.blogspot.com.es/2015/08/la-idea-del-ancestro-comun.html [Último acceso: 15 Ene. 2018]

Da Silva, I. (2017). “Organismos Modelo”. Knoow.net. Disponible en: http://knoow.net/ciencterravida/biologia/organismos-modelo/ [Último acceso: 15 Ene. 2018]

Neyoy, C. (2014). “Organismos modelos en biología”. Apuntes de biología molecular. Disponible en: http://apuntesbiologiamol.blogspot.com.es/2014/03/organismos-modelo-en-biologia.html [Último acceso: 15 Ene. 2018]

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. Disponible en: http://seresmodelicos.csic.es/ [último acceso: 15 Ene. 2018]