Los diferentes organismos modelo. Capitulo 5: Plantas

Ya en el 2017, en mi artículo “Descontaminación de suelos mediante el uso de plantas transgénicas” os hable de la importancia que puede tener la modificación genética en plantas, tanto para el ser humano como para el medio ambiente.  En dicho artículo mencionaba el uso de la especie Arabidopsis thaliana, como planta transgénica en la fitorremediación, la cual es capaz de acumular mercurio (Hg), una de las sustancias más tóxicas.

Aunque A. thaliana no sea de los organismos modelo más famoso entre la población (fuera del laboratorio es considerada una mala hierba) como tal vez si lo sean los ratoncitos blancos (Mus musculus) y las moscas de la fruta (Drosophila melanogaster), es una de las plantas mas estudiadas globalmente a nivel genético y fisiológico (Busoms, 2016).

La planta A. thaliana pertenece a la familia de las crucíferas (Brassicaceae), a la que pertenecen unas 4 mil especies (Poveda, 2018). Entre estas especies destacan algunas de interés agrícola como la col (Brassica oleracea) y el nabo (Brassica napus) (Valls, 2011). La especie protagonista de este artículo esta distribuida por todos los continentes (es cosmopolita), es una planta anual de pequeño tamaño, entre 10 y 30 cm (Povedad, 2018), presenta un ciclo de vida relativamente corto (unas 6 semanas) y es un organismo muy prolífico, siendo capaz de producir hasta 10000 semillas por individuo, las cuales son viables varios años. También es capaz de autofecundarse, es decir, es autógama (Busoms, 2016). Presenta 4 pétalos en las flores, las cuales son blancas, con forma de cruz (por esta razón pertenece a las crucíferas) (Poveda, 2018). Dichas flores son pequeñas y hermafroditas (órganos reproductores masculinos y femeninos). En cuanto al fruto, es una silicua de unos 4 cm de largo y 2 mm de ancho, pudiendo albergar hasta 30 semillas por silicua (Valls, 2011). Las semillas serán dispersadas por el viento, este tipo de dispersión es conocido como “dispersión anemócora”.

Arabidopsis
Representación gráfica de la planta Arabidopsis thaliana / Poveda, 2018.
Silicuas-y-semillas-de-A.-thaliana
Silicuas y semillas de A. thaliana / Poveda, 2018.

Esta planta, a simple vista, no parece gran cosa y mucho menos que tenga algún interés para el ser humano. Esto puede deberse a que no destaca visualmente para ser una especie ornamental y sus órganos no son atractivos para su consumo. No obstante, como os he dicho al principio, es un organismo modelo de los mas importantes y estudiados en investigación sobre biología molecular, genética y fisiología vegetal (Poveda, 2018). Es cierto que su uso en el laboratorio ha sido bastante tardío, y consolidado en la década de los años 80 (Valls, 2011). Arabidopsis thaliana  consta de 7 características principales por las que ha sido elegida organismo modelo: su pequeño tamaño y fácil manejo, su corto tiempo de generación, su autopolinización y número de semillas producidas, su pequeño genoma y su número reducido de cromosomas (Poveda, 2018). Estas características permiten que cultivarla en invernaderos y cámaras de cultivo sea bastante sencillo. Además su pequeño genoma, secuenciado completamente en el año 2000, permite su manipulación por ingeniería genética de manera fácil y rápida en comparación con otras especies de plantas (Valls, 2011).

Con esta especie se investigan muchos procesos biológicos. A nivel genético, gracias a la creación de mutantes, se han logrado desarrollar grandes conocimientos en el mundo vegetal, como en los procesos de germinación y floración, crecimiento radicular, síntesis de la pared celular, entre otros (Poveda, 2018). Sin embargo, la investigación con A. thaliana  también es muy útil en ecología, es decir, interacciones con otras plantas al rededor de su medio ambiente. A nivel ecológico se estudian las respuestas de dicha planta a condiciones estresantes de tipo abiótico (como condiciones de salinidad, sequía, heladas, etc.) o bien cómo reacciona ante ataques de patógenos y plagas. Un ejemplo de este tipo de investigaciones, a nivel ecológico, es el estudio realizado por  Sílvia Busoms y su equipo (2015) en Cataluña. Estos científicos estudian la tolerancia que presentan las poblaciones costeras de A. thaliana ante la salinidad del medio ambiente en el que se encuentran.

Para leer el capítulo anterior: capítulo 4.

Para leer mi artículo: “Descontaminación de suelos mediante el uso de plantas transgénicas”.

REFERENCIAS

Busoms, S.; Teres, J.; Huang, X.; Bomblies, K.; Dnaku, J.; Douglas, A.; Weigel, D.; Poschenrieder, C.; Salt, D. E. (2015). Salinity is an agent of divergent selection driving local adaptation of Arabidopsis thaliana to coastal habitatsPlant Physiology 168 (3): 915-929. doi: 10.1104/pp.15.00427.

Busoms, S (2016). “Arabidopsis thaliana, no sólo una planta de laboratorio. Importancia de las poblaciones silvestres catalanas.” UABDivulga [online]. Disponible en: https://www.uab.cat/web/detalle-noticia/arabidopsis-thaliana-no-solo-una-planta-de-laboratorio-importancia-de-las-poblaciones-silvestres-catalanas-1345680342040.html?noticiaid=1345695163636 [Último acceso: 21 Feb 2020].

Poveda J. (2018).  “Arabidopsis thaliana: la “mala hierba” que alcanzó la cima de la ciencia vegetal”. [online]. Disponible en: https://naukas.com/2018/01/11/arabidopsis-thaliana-la-mala-hierba-que-alcanzo-la-cima-de-la-ciencia-vegetal/ [Último acceso: 21 Feb 2020].

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 21 Feb 2020].

 

Los diferentes organismos modelo. Capítulo 4: levaduras

¿A quién no le gusta irse un domingo de cañas con los amigos o la familia, verdad? Aunque no a todos nos guste la cerveza, y me incluyo, también podemos disfrutar de la tradición “irse de cañas” pidiendo un buen vino o disfrutando de las tapas acompañadas con un buen trozo de pan, ¿verdad? Por si no los sabíais, tanto la cerveza como el pan y el vino proceden de las levaduras. “¿Pero, y eso qué es?” os estaréis preguntando. Bien, si seguís leyendo, este breve capítulo os ayudará a resolver esta duda.

Las levaduras son hongos unicelulares de muy pequeño tamaño (3-40 micrómetros), tan diminutas que no podemos verlas sin la ayuda de un microscopio. No obstante, si podemos ver agregados de levaduras. Aunque parezca mentira, estos pequeños microorganismos están en contacto con nosotros continuamente. Encontramos levaduras en plantas, animales e insectos, también en superficies como las cascaras de frutas e incluso en nuestra piel (Mejía & Saavedra). Se encuentran tanto en sistemas acuáticos como terrestres (Ainia, 2011). La palabra levadura procede del termino en latín “levare” (significa subir o levantar) ya que al añadir levadura a la harina se puede visualizar como la masa del pan se “levanta”. Otro nombre alternativo es “fermento” procedente del latín “fervere” (cuyo significado es hervir) proveniente del movimiento del mosto durante la producción de vino o cerveza (Valls, 2011).

La importancia de las levaduras radica en su larga relación con la sociedad humana, ya que estas han sido utilizadas en la industria, para producir alimentos, bebidas, fármacos y enzimas industriales. A pesar de su utilidad para la industria, también son un modelo de estudio para enfermedades como Alzheimer, Parkinson y cáncer (Mejía & Saavedra). Además gracias a su rápido crecimiento, las levaduras presentan ventajas en la producción de proteínas, ventaja que ha sido utilizada y estudiada con fines terapéuticos desde 1980, con la producción de proinsulina. Otras de las proteínas producidas mediante levaduras son la insulina y el factor de crecimiento epidérmico. (Mejía & Saavedra).

Sin embargo, las levaduras son mas conocidas por la producción de cerveza, pan y vino mediante técnicas de fermentación. Para quienes no lo sepáis, la fermentación es un proceso metabólico anaeróbico (en ausencia de oxigeno) realizado por bacterias y hongos. Estas técnicas son tan antiguas como la agricultura y la ganadería; ya se llevaban acabo bebidas fermentadas antes de Cristo en países como China, Irán y Egipto. Hasta el siglo XX, cuando la levadura fue observada como ser vivo, no se supo la razón científica de estas técnicas de fermentación. A partir de este siglo cobran gran importancia en el laboratorio convirtiéndose en organismo modelo y herramienta de laboratorio para estudiar la célula eucariota (Valls, 2011).

Saccharomyces cerevisiae

Saccharomyces cerevisiae. Foto de. Dr. A.V Carrascosa.
Imagen de Saccharomyces cerevisiae mediante microscopía óptica por contraste. Levadura utilizada para hacer vino Albariño / Dr. A.V. Carrascosa. CIAL (CSIC-UAM)

La especie más conocida y utilizada en los procesos industriales es Saccharomyces cerevisiae, cuyo nombre significa levadura comedora de azúcar, entre otros. Esta levadura fue seleccionada como organismo modelo a partir de 1930 (Mejía & Saavedra). Otras especies de importancias son S. bayanus y S. pastorianus (Ainia, 2011).

Hay cinco filos de hongos y los más abundante son los Ascomycota y Basidiomycota, conocidos como los “hongos verdaderos” (Grisales, 2017). El hongo S. cerevisiae pertenece al filo Ascomycota que incluye a más de 60000 especies, como las trufas, las colmenillas o el Penicillium, el hongo que produce la penicilina.

En 1996 se terminó la secuenciación completa del genoma de S. cerevisiae, siendo el primer organismo eucariota en ser secuenciado y actualmente es el genoma eucariota mejor conocido. Su genoma contiene unos 6000 genes y se conoce la función de casi todos ellos. Este genoma es unas cuatro veces mayor que el de E. coli, la bacteria del capitulo 3 de esta serie. (Valls, 2011).

Para leer el capítulo anterior: capítulo 3.

Para leer el capítulo siguientr: capítulo 5.

REFERENCIAS

Aina. (2011). “¿Por qué las levaduras son compuestos importantes para la industria?” Ainia insights. [online]. Disponible en: https://www.ainia.es/insights/por-que-las-levaduras-son-compuestos-importantes-para-la-industria/ [Último acceso: 13 Feb. 2020].

De Martin Barry, A. (2015). Capitulo 1, Aspectos generales del metabolismo de Saccharomyces cerevisiae. Control del metabolismo de en la síntesis de glutatión. Tesis doctoral inédita. Universidad de Granada. Disponible en: https://hera.ugr.es/tesisugr/15792390.pdf [Último acceso: 13 Feb. 2020].

Grisales, L. (2017). Hongos (reino Fungi): características y clasificación o tipos. Revista digital sobre animales y mascotas. naturaleza y Turismo. [online]. Disponible en: https://naturaleza.paradais-sphynx.com/fungi/hongos.htm [Último acceso 13 Feb. 2020].

Mejía, J. & Saavedra, A. Conociendo las Levaduras. Revista de divulgación Saber más UMSNH. [online]. Disponible en: https://www.sabermas.umich.mx/archivo/articulos/97-numero-131/193-conociendo-las-levaduras.html [Último acceso 12 Feb. 2020].

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso 13 Feb. 2020].

Los diferentes organismos modelo. Capítulo 3: bacterias

Escherichia coli. geralt. 2013
Escherichia coli/ Geralt. 2013

Este capitulo se va a centrar en las bacterias. Normalmente pensamos en las bacterias como organismos microscópicos perjudiciales para nuestra salud. Sin embargo, gran parte de la vida seria imposible sin ellas. Son pocas las especies de bacterias que causan daños a los animales, plantas o cualquier otro tipo de organismo (Totora, 2007).

Las bacterias son organismos procariotas. Tradicionalmente se las ha clasificado en dos reinos Arqueobacterias o Eubacterias, no obstante estos términos ya no se usan porque han evolucionado paralelamente.

Las Arqueobacterias, actualmente se clasifican en tres superfilos:

  • Superfilo TACK
  • Superfilo Euryarchaeota
  • Superfilo DPANN

Las Eubacterias pueden dividirse en:

  • Proteobacterias
  • Bacterias Gram positivas
  • Bacterias fotosintéticas

Célula procariota
Partes de la célula procariota.

La célula procariota, tiene un tamaño de unos 3-10 μm. Estas células no tienen núcleo, presentan una pared formada por dos membranas y entre ellas, una capa de peptidoglicano (Valls, 2011). Además presentan una serie de elementos particulares:

  • Los mesosomas, invaginaciones de la membrana plasmática para aumentar la superficie de la misma.
  • Los plásmidos, material genético extracromosómico que aporta a las procariotas ventajas en el funcionamiento, aunque no es vital.
  • Los cuerpos de inclusión que tienen una función de reserva.

Escherichia coli

 La bacteria Escherichia coli, conocida como E. coli, es el organismo mejor conocido en la comunidad científica. E. coli es una Proteobacterias, pertenece a la familia enterobacteriaceae.

Esta bacteria es común de aves y mamíferos, esta presente en el intestino humano. Muchos conocimientos fundamentales de la biología moderna (procesos de recombinación genética en bacterias, la transcripción del ARN, la replicación del ADN y regulación genética) son gracias a estudios realizados con esta bacteria (Valls, 2011).

E.coli tiene mala fama por algunos miembros de su familia que son perjudiciales para el ser humano, no obstante hay cientos de tipos que son inofensivas. Las cepas de E. coli que se encuentran en zonas poco habituales del intestino o fuera de él, suelen ser infecciosas. Causan infecciones como la diarrea severa, la cistitis aguda y la infección enterohemorrágica (Valls, 2011). Muchas formas de esta bacteria son modificadas para nuestro propio beneficio, para obtener rápidamente genes y proteínas especificas, es decir, son usadas como microfábricas. Esto es posible gracias a sus características, dado que es fácil de cultivar, no requiere demasiada energía y no necesita sofisticas condiciones para vivir, y sobretodo, es fácilmente modificable y su replicación es bastante rápida. Con E. coli se han producido antibióticos, vacunas y muchas otras terapias (Mundasad, 2011).

Para leer el capítulo anterior: capítulo 2

Para leer el siguiente capítulo:capítulo 4

REFERENCIAS

Mundasad, S. (2011). “E. coli: ¿bacteria amiga o enemiga?”. BBC. Disponible en: https://www.bbc.com/mundo/noticias/2011/06/110604_ecoli_buena_o_mala_sao [último acceso: 16 Mar. 2019]

Tortora, G.; Funke, B. y Case, C. (2007). Introducción a la microbiología. Panamericana, Madrid.

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. Disponible en: http://seresmodelicos.csic.es/ [último acceso: 16 Mar. 2019]

 

 

Los diferentes organismos modelo. Capítulo 2: Virus Bacteriófagos

bacteriofago T4. Gónzales, C.
Imagen de un virus bacteriófago T4/ Gónzales, C.

En el capítulo 1 de estar serie,  os comenté la importancia de los organismo modelo en la ciencia. Estos organismos permiten a los científicos obtener una gran información y poder extrapolarla al resto de los organismo. En este capítulo, como su mismo nombre indica os voy a hablar de los virus bacteriófagos.

Para los que no sabéis que son los virus, aunque no son seres vivos, son agentes infecciosos, con un tamaño entre 10-400nm. Son acelulares, se reproducen utilizando la maquinaria reproductora de una célula hospedadora, por lo que son parásitos obligados. No obstante, poseen información genética propia: dirigen su proceso de replicación y su ácido nucleico codifica para proteínas virales, estructurales o de multiplicación. Hay diferentes formas de clasificarlos:

  • En función al hospedador que parasitan se clasifican en 3 grandes grupos: virus bacterianos o bacteriófagos, virus vegetales y virus animales.
  • Por su forma: helicoidales, icosaédricos y complejos.
  • Según el tipo de ácido nucleico: ADN-virus o ARN-virus.
  • Por la presencia o ausencia de envoltura: envueltos o desnudos.

A pesar de su diversidad, suelen tener algunas características comunes como: una cubierta protectora de proteína o cápside, un genoma de ADN o ARN dentro de la cáspside, y una capa de membrana denominada envoltura, solo presente en algunos virus (Kahn, 2016).

Estructura y forma virus
Imagen 1: Estructura y forma de los virus.

Virus Bacteriófagos:

Los virus bacteriófagos o fagos son aquellos que infectan a las bacterias. Son los mas estudiados. Varían mucho en sus formas y en su material genético. Sus genomas pueden ser de ADN o ARN pudiendo tener desde cuatro genes hasta cientos (Kahn, 2016). Suelen ser virus complejos, pero también hay fagos icosaédricos, y helicoidales.

En las infecciones víricas de los bacteriófagos, existen dos ciclos de vida distintos. Un ciclo de vida lítico o un ciclo de vida lisogénico. 

Ciclo lítico:

Existen diferentes etapas: 

  1. Inicialmente se da una fase de adsorción o fijación donde se unen las proteínas o las fibras de la cola del fago a los receptores específicos de la célula bacteriana. Esta unión es reversible.
  2. Después ocurre la penetración o entrada del virus en la bacteria. En los bacteriófagos ocurre por inyección del ácido nucleico, que pasa desde la cabeza hasta la célula huésped a través de la cola hueca.
  3. Una vez liberado el ácido nucleico, se inicia su replicación en el citoplasma celular y la síntesis de proteínas virales, utilizando la maquinaria biosintética del hospedador, también en el citoplasma.
  4. Tras esto, tiene lugar una etapa de ensamblaje o maduración, donde las copias de ácido nucleico y de proteínas virales se agrupan formando nuevos virus.
  5. Una vez terminada la multiplicación, los virus salen de la célula provocando la lisis de esta. Durante la fase de liberación, los virus envueltos adquieren su membrana a partir de la membrana de la célula hospedadora, tras insertar en ella proteínas específicas codificadas por el genoma viral.

lítico
Imagen 2: Ciclo lítico en virus bacteriófagos.

Ciclo lisogénico:

No todos los fagos presentan este ciclo, solo pueden usar el ciclo lítico. Pero existen fagos atemperados  que pueden alternar entre ciclo lítico y ciclo lisogénico.

Este ciclo permite a un fago reproducirse, pero sin matar las células de su huésped. Las fases de fijación e inyección del ADN son iguales que en el ciclo lítico. Pero se diferencian en que no se va a copiar ni expresar el ADN,  su ADN se va a incorporar al genoma de la bacteria (pasa a denominarse profago) y  se va a replicar junto con el genoma de la bacteria sin que se produzca la síntesis de los componentes virales ni la liberación de la progenie viral (Kahn, 2016).

Lisogénico
Imagen 3: Ciclo lisogénicos en virus bacteriófagos.

El Fago T4

El bacteriófago más característico es el Fago T4. Infecta a las bacterias Escherichia coli. Mide unos 200nm, siendo de los fagos más grandes. Pertenece al grupo T, donde también se incluyen los enterobacteriófagos T2 y T6. Tan solo consta de un ciclo vital lítico, y no lisogénico, que dura unos 30 minutos. Unas de sus características es su alta velocidad de copia del ADN con solo un error por cada 300 copias. Este fago se ha utilizado en estudios sobre la regulación génica, estudios sobre el cáncer y el control de la proliferación celular (Neyoy, 2014).

Estructura del fago T4
Imagen 4: Estructura del Fago T4

Para leer el siguiente capítulo: capítulo 3.

REFERENCIAS:

Neyoy, C. (2014). “Organismos modelos en biología”. Apuntes de biología molecular. Disponible en: http://apuntesbiologiamol.blogspot.com.es/2014/03/organismos-modelo-en-biologia.html [Último acceso: 15 Ene. 2018]

Khan, K. (2016). “Virus”. Khan Academy. DIsponible en: https://es.khanacademy.org/science/biology/biology-of-viruses [Último acceso: 3 jun. 2018].

Los diferentes organismos modelo. Capítulo 1: Introducción

Organismos modelo.
Collage de algunos organismos modelos. Imagen A: virus bacteriófago Fago T4 / Gónzales, C.; Imagen B: Echerichia coli / Geralt. 2013; Imagen C: Observación en fresco (levaduras vivas) por microscopía óptica por contraste Nomarsky de una cepa de Saccharomyces cerevisiae / Dr. A.V. Carrascosa. Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM). Imagen D: Arabidopsis thaliana / Universidad de Iowa. Departamento de biología. E. Jefferson St.; Imagen E: imagen de microscopía electrónica del nematodo Caenorhabditis elegans /Juergen Berger, Max Planck Institute for Developmental Biology, Tübingen, Alemania Imagen F: Drosophila melanogaster / AlexWild. Stock de laboratorio en la Universidad de California, San Diego.; Imagen G: Danio rerio / ESD. 2002.; Imagen H: Mus musculus / Greenaway, F.; Collage por Gómez, M. 2018.

La Teoría del Ancestro Común está basada en una teoría del naturalista Charles Darwin. Esta teoría explica cómo cambian las especies a partir de un antepasado común, adaptándose a las condiciones del medio ambiente (Alzabe, 2015). Durante la evolución, las propiedades fundamentales que componen a un ser vivo se han mantenido inalteradas. No obstante, la evolución ha dado lugar a una amplia diversidad de seres vivos. Dado que hay una gran diversidad pero que existen similitudes entre las diferentes especies, se han utilizado organismos modelos para estudiar diferentes aspectos de la biología celular y molecular.

Árbol filogenético de la vida
Árbol filogenético de la vida / Roll, R. 2007

La clasificación de los seres vivos se divide en tres reinos: Archea, Bacteria y Eukarya. Los dos primeros son organismos procariotas, mientras que Eukarya corresponde a los organismos eucariotas. El árbol filogenético demuestra que todos los seres vivos tenemos un grupo de ancestros en común. En las etapas más tempranas del desarrollo de la vida en nuestro planeta, tuvo lugar un mayor intercambio de material genético entre los primeros organismos que surgieron, constituyendo las bases de las futuras especies (Neyoy, 2014).

Gracias a los organismos modelo, la comunidad científica ha podido recopilar gran cantidad de información, ya que proporcionan datos valiosos para el análisis del desarrollo humano, regulación génica, enfermedades y procesos evolutivos. Sin embargo, las investigaciones centradas en estos organismos plantean cuestiones científicas y filosóficas. Estos seres vivos seleccionados representan una ínfima fracción de la biodiversidad que encontramos en el planeta. Por tanto, se debe asumir que la información recopilada de estos organismos se puede extrapolar al resto de organismos considerando un origen común (Valls, 2011).

A la hora de seleccionar los organismos modelo con los que se realizaran los diferentes experimentos de un estudio científico, se deben tener en cuenta varias características que aportan ventajas a los investigadores. Las tres principales características que un organismo debe presentar para ser útil en un laboratorio son su abundancia, su facilidad para criar o cultivar y su facilidad de manipulación en el laboratorio; así como otras características distintivas como embriones de gran tamaño, un linaje celular fijo, transparencia, etc (Valls, 2011).

Como ya he dicho, debido a la diversidad de complejidad entre los seres vivos de los diferentes reinos hubo la necesidad de establecer un abanico de organismos modelo para hacer posible el estudio de una amplia gama de características biológicas (Da Silva, 2017). Entre ellos destacan:

  • En los virus se utilizan virus bacteriófagos como el Fago T4.
  • En los procariotas destaca la bacteria Escherichia coli.
  • En los eucariotas encontramos varios organismos modelos como:
  • Levaduras: Saccharomyces cerevisiae.
  • Plantas: Arabidopsis thaliana.
  • Nematodos: Caenorhabditis elegans.
  • Insectos: Drosophila melanogaster.
  • Peces: Danio rerio.
  • Mamíferos:Mus musculus.

En esta serie de artículos os iré hablando concretamente de estos organismos modelo. Si conocéis algún otro que no esté en esta lista, y queréis que os dé información sobre él, escribidlo en los comentarios.

Para leer el siguiente capítulo: capítulo 2.

REFERENCIAS

Alzabe, R. (2015). “La idea de un ancestro común”. BIODIVERSIDAD. Disponible en:http://biodiversidadorigen.blogspot.com.es/2015/08/la-idea-del-ancestro-comun.html [Último acceso: 15 Ene. 2018]

Da Silva, I. (2017). “Organismos Modelo”. Knoow.net. Disponible en: http://knoow.net/ciencterravida/biologia/organismos-modelo/ [Último acceso: 15 Ene. 2018]

Neyoy, C. (2014). “Organismos modelos en biología”. Apuntes de biología molecular. Disponible en: http://apuntesbiologiamol.blogspot.com.es/2014/03/organismos-modelo-en-biologia.html [Último acceso: 15 Ene. 2018]

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. Disponible en: http://seresmodelicos.csic.es/ [último acceso: 15 Ene. 2018]