Los diferentes organismos modelo. Capitulo 5: plantas

Ya en el 2017, en mi artículo “Descontaminación de suelos mediante el uso de plantas transgénicas” os hable de la importancia que puede tener la modificación genética en plantas, tanto para el ser humano como para el medio ambiente.  En dicho artículo mencionaba el uso de la especie Arabidopsis thaliana, como planta transgénica en la fitorremediación, la cual es capaz de acumular mercurio (Hg), una de las sustancias más tóxicas.

Aunque A. thaliana no sea de los organismos modelo más famoso entre la población (fuera del laboratorio es considerada una mala hierba) como tal vez si lo sean los ratoncitos blancos (Mus musculus) y las moscas de la fruta (Drosophila melanogaster), es una de las plantas mas estudiadas globalmente a nivel genético y fisiológico (Busoms, 2016).

La planta A. thaliana pertenece a la familia de las crucíferas (Brassicaceae), a la que pertenecen unas 4 mil especies (Poveda, 2018). Entre estas especies destacan algunas de interés agrícola como la col (Brassica oleracea) y el nabo (Brassica napus) (Valls, 2011). La especie protagonista de este artículo esta distribuida por todos los continentes (es cosmopolita), es una planta anual de pequeño tamaño, entre 10 y 30 cm (Povedad, 2018), presenta un ciclo de vida relativamente corto (unas 6 semanas) y es un organismo muy prolífico, siendo capaz de producir hasta 10000 semillas por individuo, las cuales son viables varios años. También es capaz de autofecundarse, es decir, es autógama (Busoms, 2016). Presenta 4 pétalos en las flores, las cuales son blancas, con forma de cruz (por esta razón pertenece a las crucíferas) (Poveda, 2018). Dichas flores son pequeñas y hermafroditas (órganos reproductores masculinos y femeninos). En cuanto al fruto, es una silicua de unos 4 cm de largo y 2 mm de ancho, pudiendo albergar hasta 30 semillas por silicua (Valls, 2011). Las semillas serán dispersadas por el viento, este tipo de dispersión es conocido como “dispersión anemócora”.

Arabidopsis
Representación gráfica de la planta Arabidopsis thaliana / Poveda, 2018.
Silicuas-y-semillas-de-A.-thaliana
Silicuas y semillas de A. thaliana / Poveda, 2018.

Esta planta, a simple vista, no parece gran cosa y mucho menos que tenga algún interés para el ser humano. Esto puede deberse a que no destaca visualmente para ser una especie ornamental y sus órganos no son atractivos para su consumo. No obstante, como os he dicho al principio, es un organismo modelo de los mas importantes y estudiados en investigación sobre biología molecular, genética y fisiología vegetal (Poveda, 2018). Es cierto que su uso en el laboratorio ha sido bastante tardío, y consolidado en la década de los años 80 (Valls, 2011). Arabidopsis thaliana  consta de 7 características principales por las que ha sido elegida organismo modelo: su pequeño tamaño y fácil manejo, su corto tiempo de generación, su autopolinización y número de semillas producidas, su pequeño genoma y su número reducido de cromosomas (Poveda, 2018). Estas características permiten que cultivarla en invernaderos y cámaras de cultivo sea bastante sencillo. Además su pequeño genoma, secuenciado completamente en el año 2000, permite su manipulación por ingeniería genética de manera fácil y rápida en comparación con otras especies de plantas (Valls, 2011).

Con esta especie se investigan muchos procesos biológicos. A nivel genético, gracias a la creación de mutantes, se han logrado desarrollar grandes conocimientos en el mundo vegetal, como en los procesos de germinación y floración, crecimiento radicular, síntesis de la pared celular, entre otros (Poveda, 2018). Sin embargo, la investigación con A. thaliana  también es muy útil en ecología, es decir, interacciones con otras plantas al rededor de su medio ambiente. A nivel ecológico se estudian las respuestas de dicha planta a condiciones estresantes de tipo abiótico (como condiciones de salinidad, sequía, heladas, etc.) o bien cómo reacciona ante ataques de patógenos y plagas. Un ejemplo de este tipo de investigaciones, a nivel ecológico, es el estudio realizado por  Sílvia Busoms y su equipo (2015) en Cataluña. Estos científicos estudian la tolerancia que presentan las poblaciones costeras de A. thaliana ante la salinidad del medio ambiente en el que se encuentran.

Para leer el capítulo anterior: capítulo 4.

Para leer el siguiente capitulo: capítulo 6

Para leer mi artículo: “Descontaminación de suelos mediante el uso de plantas transgénicas”.

REFERENCIAS

Busoms, S.; Teres, J.; Huang, X.; Bomblies, K.; Dnaku, J.; Douglas, A.; Weigel, D.; Poschenrieder, C.; Salt, D. E. (2015). Salinity is an agent of divergent selection driving local adaptation of Arabidopsis thaliana to coastal habitatsPlant Physiology 168 (3): 915-929. doi: 10.1104/pp.15.00427.

Busoms, S (2016). “Arabidopsis thaliana, no sólo una planta de laboratorio. Importancia de las poblaciones silvestres catalanas.” UABDivulga [online]. Disponible en: https://www.uab.cat/web/detalle-noticia/arabidopsis-thaliana-no-solo-una-planta-de-laboratorio-importancia-de-las-poblaciones-silvestres-catalanas-1345680342040.html?noticiaid=1345695163636 [Último acceso: 21 Feb 2020].

Poveda J. (2018).  “Arabidopsis thaliana: la “mala hierba” que alcanzó la cima de la ciencia vegetal”. [online]. Disponible en: https://naukas.com/2018/01/11/arabidopsis-thaliana-la-mala-hierba-que-alcanzo-la-cima-de-la-ciencia-vegetal/ [Último acceso: 21 Feb 2020].

Valls, L. (2011). “Seres modélicos. Entre la naturaleza y el laboratorio”. CSIC. [online] Disponible en: http://seresmodelicos.csic.es/ [Último acceso: 21 Feb 2020].

 

Murcia enfrenta plagas con insectos

Los árboles de Murcia serán protegidos de bichos perjudiciales, con insectos depredadores de estas plagas.

Se soltarán ejemplares de Aphidius y Chrysopa durante el mes de mayo en los parques y calles principales de la ciudad, con el fin de disminuir la población de los insectos que dañan los árboles, y alargar la vida de sus vegetales.

Lea la noticia aquí

¿Realmente, las plantas y los animales, somos tan distintos?

9788491110835.jpg

Libro que os recomiendo a leer. “La vida secreta de los árboles” de Peter Wohlleben. Referencia de la imagen: https://www.casadellibro.com/libro-la-vida-secreta-de-los-arboles-descubre-su-mundo-oculto-que-sienten-que-comunican/9788491110835/2937083

No sé si sois amantes de los libros o no, yo no es que lo sea, la verdad, pero desde hace un tiempo me encanta devorar libros de divulgación científica.

A inicios de este verano me compré “La vida secreta de los árboles” de Peter Wohlleben, un libro que sin duda os recomiendo. Supongo que habréis oído hablar de que las plantas son capaces de comunicarse entre sí, algo que nunca se me había pasado por la cabeza, y al escucharlo no pude evitar querer saber más sobre el tema. Este libro no sólo habla de la capacidad que tienen las plantas de comunicarse, sino también de cómo parecen seres pensantes, cómoe protegen, de su organización en el bosque, de sus habilidades para adaptarse a ciertos medios, etc.

A mí, especialmente, me llama la atención la forma en que se comunican. Por eso voy a centrar este artículo en la comunicación de los árboles. Mi compañera Sara Atienza, colaboradora de este mismo blog, publicó a finales de febrero una charla TED de Suzanne Simard sobre este mismo tema, charla la cual os invito a ver.

Peter Wohlleben, en el segundo capítulo de su libro “El lenguaje de los árboles” comienza con la definición, que encontramos en el diccionario, de la palabra lenguaje: “capacidad que las personas tienen de expresarse”. Como bien dice, es una capacidad restringida a nuestra especie, donde se refleja que pensar en que los árboles son capaces de comunicarse es algo bastante sorprendente y que pocas personas se han llegado a plantear. A medida que sigues leyendo este capítulo te das cuenta de que tienen su propio lenguaje, no mediante palabras, pero sí a través de sustancias odoríferas y señales eléctricas. Además, para esta comunicación también intervienen los hongos que ayudan al transporte de las señales uniéndose a las raíces de las especies vegetales creando kilómetros de tuberías (Galisteo, 2017).

Suzanne Simard, científica en la Universidad de Columbia Británica en Vancouver (Canadá), publicó en 1997 una parte de su tesis doctoral en la cual plasmaba su idea de que existe una relación simbiótica entre los hongos y los árboles. Los árboles proporcionan a los hongos azúcares producidos en la fotosíntesis, mientras que los hongos proporcionan compuestos inorgánicos como nitrógeno o fósforo necesarios para el árbol, y contribuyen a la transmisión de información y nutrientes entre un ejemplar y otro (Galisteo, 2017).

Tras este inciso, volvamos a los dos medios de comunicación del que disponen las plantas. En primer lugar, las sustancias odoríferas se transmiten por la superficie. Estas sustancias van a depender del viento para ser transportadas lo más lejos y rápidamente posible. No obstante, el viento también supone una desventaja para estas sustancias, ya que favorece a que se diluyan fácilmente, de hecho, no suelen alcanzar ni los 100 metros. Los árboles utilizan estas sustancias para advertir de peligros o para atraer a otros seres vivos. Por ejemplo, en la sabana africana las jirafas se alimentan de las acacias de copa plana. Las acacias, para protegerse, envían en pocos minutos sustancias tóxicas a las hojas. Lo más sorprendente es ver como las jirafas dejan unos cuantos ejemplares de árboles a un lado y siguen con su festín 100 metros más allá del árbol inicial. Esto es debido a que las acacias atacadas emiten un gas de aviso, etileno, indicando a las otras más cercanas de la proximidad de un peligro, provocando que emitan las sustancias tóxicas a sus hojas (Wohlleben, 2016). En segundo lugar, utilizan las señales eléctricas a través de las raíces para asegurarse de que el mensaje llega con seguridad. El problema de estas señales es la velocidad de propagación, ya que se transmiten con una velocidad de un centímetro por segundo. Las raíces de los árboles se extienden por el suelo más del doble de la amplitud de sus copas. Estas raíces son las encargadas de entrelazarse unas con otras y ser el canal por el que se transporta la información y los nutrientes. No obstante, hay árboles que no se enlazan con los demás provocando la pérdida de propagación. De aquí proviene la importancia de la relación simbiótica de los árboles y los hongos. Los hongos se intercalan en las raíces uniendo a todos los árboles.

Se sabe muy poco de esta super conexión del mundo vegetal, pero cada vez somos más conscientes de la importancia que supone. Los árboles se ayudan entre sí intercambiándose nutrientes, se protegen los unos a los otros enviando señales de peligro.

Así mismo, esto es sólo un pequeño artículo, podría seguir hablando de esta comunicación o sobre los nuevos descubrimientos. Como por ejemplo los descubrimientos de Mónica Gagliano, de la Universidad de Australia Occidental, acerca de la capacidad que tienen las raíces de crepitar con una frecuencia de 220 Herzz y de cómo someterlas a esa misma frecuencia, las puntas de las raíces se orientan en la misma dirección de la que proviene la frecuencia. ¿Serán las plantas capaces de escuchar?

¡Si queréis que siga escribiendo sobre más temas que se pueden leer en el libro de Peter Wohlleben, o iniciar algún debate sobre el tema os invito a dejar comentarios!

Referencias

Atienza, S. (2017). “¿Como se comunican las plantas?”. Ecotoxsan. Disponible en: https://ecotoxsan.blog/2017/02/27/como-se-comunican-las-plantas/  [Último acceso: 12 de Sep. 2017]

Galisteo, A. (2017). “Las comunicaciones secretas de las plantas”. Madridmasde. Disponible en: http://www.madrimasd.org/notiweb/noticias/las-comunicaciones-secretas-las-plantas [Último acceso: 12 de Sep. 2017]

Wohlleben, P. (2016). La vida secreta de los árboles. Ediciones Obelisco, Barcelona.

 

Descontaminación de suelos mediante el uso de plantas transgénicas

La modificación genética, ya sea de animales o de plantas, sigue generando polémica y opiniones diversas con mayor o menor fundamento científico. Entre las diversas aplicaciones tanto en beneficio del ser humano como del medio ambiente, vamos a hablar de una aplicación poco conocida de los transgénicos que se basa en su capacidad para descontaminar el medio ambiente.

Una de las aplicaciones de la biotecnología vegetal más conocidas hoy en día es la modificación de plantas para el uso agrícola, para que sean resistentes a insectos o puedan tolerar ciertos herbicidas. Un ejemplo de estos cultivos modificados mediante la ingeniería genética serían las plantas “Roundup Ready”, las cuales toleran al herbicida “Roundup” (glifosato). Otra utilidad de las plantas modificadas genéticamente es la biorremediación, que es un proceso en el que se utilizan seres vivos (o alguna de sus partes o productos) para la recuperación de una zona terrestre o acuática contaminada. Hay dos tipos de biorremediación:

  • in situ: mediante bioestimulación añadiendo nutrientes al medio contaminado, o mediante bioincremento, aportando al medio contaminado microorganismos para que lo degraden.
  • ex situ: se transporta el contaminante a plantas de procesamiento para su degradación por microorganismos especializados.

Una de las líneas de la biorremediación es la fitorremediación, que consiste en la utilización de las plantas y de los microorganismos asociados a las mismas con fines de descontaminación del medio ambiente (Bey, 2010). Las plantas son organismos autótrofos, sintetizan compuestos orgánicos usando como fuente de carbono el CO2 y absorbiendo agua con compuestos minerales, nitrógeno y otros nutrientes del medio a través de las raíces. Debido a la contaminación del medio ambiente, las plantas absorben también compuestos tóxicos, por lo que han ido generando mecanismos de detoxificación que les permiten sobrevivir en ambientes adversos (Bey, 2010).

Esta técnica de biorremediación permite descontaminar de manera eficiente compuestos tóxicos orgánicos e inorgánicos. Los contaminantes orgánicos son producidos mayoritariamente por el hombre como consecuencia de derrames (combustibles), actividades industriales (desechos químicos y petroquímicos) o actividades militares y agrícolas (Bey, 2010). Algunos ejemplos de compuestos orgánicos que han sido degradados de manera eficiente mediante la biorremediación son herbicidas como la atrazina o hidrocarburos derivados del petróleo (gasolina, benceno, tolueno, etc), entre muchos otros. Estos son relativamente menos tóxicos que los contaminantes orgánicos ya que son reactivos y no se acumulan.

Los compuestos inorgánicos no pueden ser degradados por las plantas, pero pueden acumularse en las partes cosechables de las mismas (Bey, 2010). Un ejemplo de estos contaminantes es el Mercurio (Hg), una de las sustancias más tóxicas. La forma más volátil es el óxido de mercurio (HgO), que puede oxidarse con el ozono atmosférico en presencia de agua para dar la forma divalente reactiva Hg2+. Esta forma puede reaccionar con compuestos orgánicos para dar lugar a organomercuriales, los cuales son potentes tóxicos para el sistema nervioso, del riñón y del hígado en animales superiores (incluidos humanos). Es importante señalar que, al ser un contaminante bioacumulable, la concentración de mercurio en los organismos va aumentando a medida que se asciende en los diferentes niveles de la cadena trófica (biomagnificación).

La eliminación de este compuesto se consigue mediante operones mer (estructuras génicas que codifican genes que protegen a determinados microorganismos de la contaminación por mercurio). Algunos investigadores han transformado plantas con genes bacterianos del operon mer, para que las plantas acumulen el aproximadamente el doble de metales. Un ejemplo de plantas en las cuales se usan estos operones seria la planta de Arabidopsis thaliana y la planta del tabaco, las cuales son transformadas con el gen merC de Acidithiobacillus ferrooxidans (Sasaki et al,2006).

Arabidopsis thaliana Universidad de Iowa. Departamento de biología. E. Jefferson St.
https://biology.uiowa.edu/model-organisms/arabidopsis-thaliana-mustard-plant

Referencias

Bey, P.; Mentaberry, A.; Segretín, M. (2010). Biotecnología y Mejoramiento Vegetal II. Parte V. Ediciones INTA y Argenbio.

Mathews, C. K.; Van Holde, K. E.; Ahern, K. G. (2002). Bioquímica. 3º ed. Pearson Addison Wesley. Madrid.

Sasaki, Y.; Hayakawa, T.; Inoue, C.; Miyazaki, A.; Silver, S.; Kusano, T. (2006). “Generation of mercuryhyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC”. Transgenic Res. 15(5): 615-625.

Se busca estudiante (Erasmus o similar) en Royal Botanic Gardens, Kew

Me llamo Daniel Ballesteros y trabajo en criobiología de plantas. Estoy dentro del departamento de biología comparativa de plantas y hongos de Royal Botanic Gardens, Kew, en Wakehurst Place (donde está el Millennium Seed Bank). Trabajo en el grupo de biología comparativa de semillas, liderado por Hugh W. Pritchard (https://www.researchgate.net/profile/Hugh_Pritchard). Tenemos actualmente un proyecto de crio-preservación de semillas recalcitrantes de bosques Europeos financiado por la fundación Weston-Garfield, que forma parte del megaproyecto “Global Tree Seed Project” (https://iufroseedwg.wordpress.com/2015/11/23/the-global-tree-seed-bank-initiative/). Principalmente trabajamos con Quercus sp. pero a veces usamos especies como Aesculus hippocastanum y Castanea sativa. La mayor parte del trabajo se concentra en los meses de Septiembre a Mayo, cuando las semillas están maduras, fechas para las que necesito ayuda en el laboratorio.

Como estudiante/interno, trabajarías bajo mi supervisión en el proyecto mencionado, haciendo labores de cultivo in vitro y crio-preservación, tocando temas de fisiología vegetal, tolerancia al desecado, biofísica y bioquímica. Una estancia de 4 a 6 meses sería un buen comienzo para adquirir bien los conocimientos y habilidades técnicas necesarias, aunque si quieres venir menos tiempo (o más) no hay problema. A parte te podrías beneficiar de la participación en los cursos, conferencias y actividades que se realizan en Royal Botanic Gardens, Kew a lo largo de todo el año.

No puedo ofrecer salario, ya que carezco de financiación exclusiva para ello. Puedo negociar alojamiento en Kew a precio reducido y ayudar con el papeleo de las Erasmus o cualquier otra beca que se pueda pedir para financiar la estancia (tipo Argo, u otras). Este año ha estado un estudiante Erasmus de Valencia conmigo y su buen rendimiento se vio al final recompensado por parte de Kew con un contrato de dos meses para alargar su estancia y su participación en el proyecto.

Si te interesa contacta conmigo a través del siguiente email: d.ballesteros@kew.org

Solo añadir que, si más que una Erasmus o una estancia corta estás buscando sitio donde realizar el proyecto fin de carrera, el proyecto de master, o incluso una tesis doctoral, estamos abiertos a supervisar cualquiera de estos trabajos dentro de lo que es biología comparativa de semillas. El grupo tiene diversos investigadores con intereses variados como la fisiología, bioquímica y biofísica de la tolerancia al desecado de semillas y esporas de helechos; la fisiología y bioquímica de la tolerancia al estrés salino; la fisiología, bioquímica y biofísica del envejecimiento de las semillas y esporas de helechos; la genómica y la proteomica de la germinación y la tolerancia al estrés, y la crio-preservación de germoplasma vegetal. Más información la podrás encontrar a través de la web de Kew (p. ej. http://www.kew.org/science/who-we-are-and-what-we-do/departments/comparative-plant-and-fungal-biology) o buscando los perfiles y proyectos de los investigadores del grupo: Hugh Pritchard, Charlotte Seal, Wolfgang Stuppy, Louise Colville, Anne Vischer, Daniel Ballesteros.